Home
Class 12
MATHS
Let the line of the shortest distance be...

Let the line of the shortest distance between the lines
`L_1 : vec r = (hat i + 2 hat j + 3 hat k) + lambda (hat i - hat j + hat k)` and `L_2 : vec r = (4 hat i + 5 hat j + 6 hat k) + mu (hat i + hat j - hat k)`
intersect `L_1` and `L_2` at P and Q respectively. If `(alpha, beta, gamma)` is the mid point of the line segment PQ, then `2(alpha + beta + gamma)` is equal to ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the mid-point of the shortest distance between the lines \( L_1 \) and \( L_2 \) and then calculate \( 2(\alpha + \beta + \gamma) \). ### Step 1: Write the equations of the lines in vector form. The lines are given as: - \( L_1: \vec{r} = (1 \hat{i} + 2 \hat{j} + 3 \hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k}) \) - \( L_2: \vec{r} = (4 \hat{i} + 5 \hat{j} + 6 \hat{k}) + \mu (\hat{i} + \hat{j} - \hat{k}) \) ### Step 2: Express the points on the lines. The points on the lines can be expressed as: - For \( L_1 \): \[ P = (1 + \lambda) \hat{i} + (2 - \lambda) \hat{j} + (3 + \lambda) \hat{k} \] - For \( L_2 \): \[ Q = (4 + \mu) \hat{i} + (5 + \mu) \hat{j} + (6 - \mu) \hat{k} \] ### Step 3: Find the vector \( \vec{PQ} \). The vector \( \vec{PQ} \) is given by: \[ \vec{PQ} = Q - P = \left[(4 + \mu) - (1 + \lambda)\right] \hat{i} + \left[(5 + \mu) - (2 - \lambda)\right] \hat{j} + \left[(6 - \mu) - (3 + \lambda)\right] \hat{k} \] This simplifies to: \[ \vec{PQ} = (3 + \mu - \lambda) \hat{i} + (3 + \mu + \lambda) \hat{j} + (3 - \mu - \lambda) \hat{k} \] ### Step 4: Set up the conditions for perpendicularity. Since \( \vec{PQ} \) is the shortest distance, it must be perpendicular to both direction vectors of \( L_1 \) and \( L_2 \). 1. Direction vector of \( L_1 \): \( \hat{b_1} = (1, -1, 1) \) 2. Direction vector of \( L_2 \): \( \hat{b_2} = (1, 1, -1) \) Set up the dot products: 1. \( \vec{PQ} \cdot \hat{b_1} = 0 \): \[ (3 + \mu - \lambda) - (3 + \mu + \lambda) + (3 - \mu - \lambda) = 0 \] Simplifying gives: \[ 3 - 2\lambda = 0 \implies \lambda = \frac{3}{2} \] 2. \( \vec{PQ} \cdot \hat{b_2} = 0 \): \[ (3 + \mu - \lambda) + (3 + \mu + \lambda) - (3 - \mu - \lambda) = 0 \] Simplifying gives: \[ 3 + 3\mu = 0 \implies \mu = -1 \] ### Step 5: Find the coordinates of points \( P \) and \( Q \). Substituting \( \lambda = \frac{3}{2} \) into \( P \): \[ P = \left(1 + \frac{3}{2}\right) \hat{i} + \left(2 - \frac{3}{2}\right) \hat{j} + \left(3 + \frac{3}{2}\right) \hat{k} = \frac{5}{2} \hat{i} + \frac{1}{2} \hat{j} + \frac{9}{2} \hat{k} \] Substituting \( \mu = -1 \) into \( Q \): \[ Q = (4 - 1) \hat{i} + (5 - 1) \hat{j} + (6 + 1) \hat{k} = 3 \hat{i} + 4 \hat{j} + 7 \hat{k} \] ### Step 6: Find the midpoint \( M \) of segment \( PQ \). The midpoint \( M \) is given by: \[ M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right) \] Calculating: \[ \alpha = \frac{\frac{5}{2} + 3}{2} = \frac{11}{4}, \quad \beta = \frac{\frac{1}{2} + 4}{2} = \frac{9}{4}, \quad \gamma = \frac{\frac{9}{2} + 7}{2} = \frac{23}{4} \] ### Step 7: Calculate \( 2(\alpha + \beta + \gamma) \). \[ \alpha + \beta + \gamma = \frac{11}{4} + \frac{9}{4} + \frac{23}{4} = \frac{43}{4} \] Thus, \[ 2(\alpha + \beta + \gamma) = 2 \cdot \frac{43}{4} = \frac{86}{4} = 21.5 \] ### Final Answer: The value of \( 2(\alpha + \beta + \gamma) \) is \( 21.5 \).
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines: vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k)) and vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k)) .

The shortest distance between the line L_1=(hat i - hat j hat k) lambda (2 hat i - 14 hat j 5 hat k) and L_2=(hat j hat k) mu (-2 hat i - 4 hat 7 hat) then L_1 and L_2 is

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and ,vec r,=2hat i-hat j-hat k+mu(2hat i+hat j+2hat k)

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Find the shortest distance between the lines whose vector equations are vec r=(hat i+2hat j+3hat k)+lambda(hat i-3hat j+2hat k) and vec r=4hat i+5hat j+6hat k+mu(2hat i+3hat j+hat k)

Find the shortest distance between the straight lines vec r=(3hat i+hat j+2hat k)+lambda(hat i+2hat j-hat k) and vec r=(2hat i-3hat j+hat k)+mu(2hat i-hat j+3hat k)

Find the shortest distance between lines vec r=(hat i+2hat j+hat k)+lambda(2hat i+hat j+2hat k) and vec r=2hat i-hat j-hat k+mu(2hat i+hat j+2hat k)

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

Find the distance between the lines l_1a n d\ l_2 given by -> r= hat i+2 hat j-4 hat k+lambda(2 hat i+3 hat j+6 hat k)a n d\ ,\ -> r=3 hat i+3 hat j-5 hat k+mu(2 hat i+3 hat j+6 hat k)dot

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let P = {z in : |z + 2 – 3i | le 1} and Q = {z in C : z (1 + i) + over...

    Text Solution

    |

  2. If int(-pi/2)^(pi/2) frac {8 sqrt 2 cos x dx}{(1 + e^(sin x)) (1 + sin...

    Text Solution

    |

  3. Let the line of the shortest distance between the lines L1 : vec r =...

    Text Solution

    |

  4. Let A= {1, 2, 3, . . 20}. Let R1 and R2 two relation on A such that ...

    Text Solution

    |

  5. Let f(x) = x^5 + 2e^(x/4) AA x in R. Consider a function of (gof) (x) ...

    Text Solution

    |

  6. One point of intersection of curve y = 1 + 3x - 2x^2 and y = 1/x is (...

    Text Solution

    |

  7. If the solution y = y(x) of the differential equation (x^4 + 2x^3 + 3x...

    Text Solution

    |

  8. The vertices of a triangle are A(-1, 3), B(-2, 2) and C(3, -1). A new ...

    Text Solution

    |

  9. Three urns A, B and C contain 7 red, 5 black, 5 red, 7 black and 6 red...

    Text Solution

    |

  10. There are 5 points P1, P2, P3, P4, P5 on the side AB, excluding A and ...

    Text Solution

    |

  11. If domain of the function f(x) = sin^(-1) (frac{3x - 22}{2x - 19}) + l...

    Text Solution

    |

  12. If alpha and beta are sum and product of non zero solution of the equa...

    Text Solution

    |

  13. Let f : R rightarrow R be a function given by f(x)={(frac{1 – cos 2x...

    Text Solution

    |

  14. The sum of all rational terms in the expansion of (2^(1/5) + 3^(1/3))^...

    Text Solution

    |

  15. Let the sum of the maximum and the minimum values of the function f(x)...

    Text Solution

    |

  16. A square is inscribed in the circle x^2+y^2-10x-6y+30=0 One side of th...

    Text Solution

    |

  17. Let a unit vector which makes an angle of 60° with 2 hat i + 2 hat j –...

    Text Solution

    |

  18. Let alpha in (0, infty) and A = [[1, 2, alpha], [1, 0, 1], [0, 1, 2]]....

    Text Solution

    |

  19. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  20. If 2 and 6 are the roots of the equation ax^2 + bx + 1 = 0, then the q...

    Text Solution

    |