Home
Class 12
MATHS
Let a unit vector which makes an angle o...

Let a unit vector which makes an angle of `60°` with `2 hat i + 2 hat j – hat k` and an angle of `45°` with `hat i – hat k` be `hat C`. Then `hat C + (-1/2 hat i + 1/(3 sqrt 2) hat j - (sqrt 2)/ 3 hat k)` is

A

`(sqrt 2)/3 hat i- 1/2 hat k`

B

`-(sqrt 2)/3 hat i- (sqrt 2)/3 hat j +(1/2 + (2 sqrt 2)/3 hat k)`

C

`(1/(sqrt 3) + 1/2) hat i+ (1/(sqrt 3) - 1/(3 sqrt 2))hat j +(1/(sqrt 3) + (sqrt 2)/3) hat k`

D

`(sqrt 2)/3 hat i + 3/(3 sqrt 2) hat j – 1/2 hat k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the unit vector \( \hat{C} \) that makes an angle of \( 60^\circ \) with the vector \( \mathbf{A} = 2\hat{i} + 2\hat{j} - \hat{k} \) and an angle of \( 45^\circ \) with the vector \( \mathbf{B} = \hat{i} - \hat{k} \). After finding \( \hat{C} \), we will add it to the vector \( \mathbf{D} = -\frac{1}{2} \hat{i} + \frac{1}{3\sqrt{2}} \hat{j} - \frac{\sqrt{2}}{3} \hat{k} \). ### Step 1: Set up the equations based on the angles 1. **Using the angle with vector \( \mathbf{A} \)**: \[ \cos(60^\circ) = \frac{\hat{C} \cdot \mathbf{A}}{|\hat{C}| |\mathbf{A}|} \] Since \( \hat{C} \) is a unit vector, \( |\hat{C}| = 1 \). The magnitude of \( \mathbf{A} \) is: \[ |\mathbf{A}| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] Thus, we have: \[ \frac{\hat{C} \cdot \mathbf{A}}{3} = \frac{1}{2} \] Therefore: \[ \hat{C} \cdot \mathbf{A} = \frac{3}{2} \] 2. **Using the angle with vector \( \mathbf{B} \)**: \[ \cos(45^\circ) = \frac{\hat{C} \cdot \mathbf{B}}{|\hat{C}| |\mathbf{B}|} \] The magnitude of \( \mathbf{B} \) is: \[ |\mathbf{B}| = \sqrt{1^2 + 0^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] Thus, we have: \[ \frac{\hat{C} \cdot \mathbf{B}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] Therefore: \[ \hat{C} \cdot \mathbf{B} = 1 \] ### Step 2: Express \( \hat{C} \) in terms of its components Let \( \hat{C} = a\hat{i} + b\hat{j} + c\hat{k} \). From the dot products, we can write: 1. For \( \hat{C} \cdot \mathbf{A} \): \[ (a\hat{i} + b\hat{j} + c\hat{k}) \cdot (2\hat{i} + 2\hat{j} - \hat{k}) = 2a + 2b - c = \frac{3}{2} \quad \text{(Equation 1)} \] 2. For \( \hat{C} \cdot \mathbf{B} \): \[ (a\hat{i} + b\hat{j} + c\hat{k}) \cdot (\hat{i} - \hat{k}) = a - c = 1 \quad \text{(Equation 2)} \] ### Step 3: Use the unit vector condition Since \( \hat{C} \) is a unit vector: \[ a^2 + b^2 + c^2 = 1 \quad \text{(Equation 3)} \] ### Step 4: Solve the equations From Equation 2: \[ c = a - 1 \] Substituting \( c \) into Equation 1: \[ 2a + 2b - (a - 1) = \frac{3}{2} \] This simplifies to: \[ 2a + 2b - a + 1 = \frac{3}{2} \implies a + 2b = \frac{1}{2} \quad \text{(Equation 4)} \] Now substitute \( c \) into Equation 3: \[ a^2 + b^2 + (a - 1)^2 = 1 \] Expanding this gives: \[ a^2 + b^2 + (a^2 - 2a + 1) = 1 \implies 2a^2 + b^2 - 2a + 1 = 1 \implies 2a^2 + b^2 - 2a = 0 \quad \text{(Equation 5)} \] ### Step 5: Solve Equations 4 and 5 From Equation 4, express \( b \): \[ b = \frac{1}{4} - \frac{a}{2} \] Substituting \( b \) into Equation 5: \[ 2a^2 + \left(\frac{1}{4} - \frac{a}{2}\right)^2 - 2a = 0 \] Expanding and simplifying leads to a quadratic in \( a \). ### Step 6: Find \( \hat{C} \) Once \( a \) is found, substitute back to find \( b \) and \( c \). ### Step 7: Calculate \( \hat{C} + \mathbf{D} \) Finally, add \( \hat{C} \) to \( \mathbf{D} \): \[ \hat{C} + \mathbf{D} = (a - \frac{1}{2})\hat{i} + (b + \frac{1}{3\sqrt{2}})\hat{j} + (c - \frac{\sqrt{2}}{3})\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

A unit vector which is perpendicular to hat i+2hat j-2hat k and to -hat i+2hat j+2hat k is

The unit vector which is orthogonal to the vector 5hat j+2hat j+6hat k and is coplanar with vectors 2hat i+hat j+hat k and hat i-hat j+hat k is (2hat i-6hat j+hat k)/(sqrt(41)) b.(2hat i-3hat jmath)/(sqrt(13)) c.(3hat i-hat k)/(sqrt(10))d.(4hat i+3hat jmath-3hat k)/(sqrt(34))

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

The angle between the vectors (hat i + hat j + hat k) and ( hat i - hat j -hat k) is

Dine the unit vector peroendicular to each of the vectors 3 hat i+ hat j 2 hat k and 2 hat i- 2 hat j = 4 hat k .

If a unit vector hat a in the plane of vec b=2 hato+ hat j& vec c= hat i- hat j+ hat k is such that vec a vec d where vec d= hat j+2 hat l , then hat a is ( hat i+ hat j+ hat k)/(sqrt(3)) (b) ( hat i- hat j+ hat k)/(sqrt(3)) (2 hat i+ hat j)/(sqrt(5)) (d) (2 hat i- hat j)/(sqrt(5))

Find the angle between the vectors vec A = hat I + 2 hat j- hat k and vec B =- hat I + hatj - 2 hat k .

A unit vector perpendicular to both hat i+ hat j\ a n d\ hat j+ hat k is hat i- hat j+ hat k b. hat i+ hat j+ hat k c. 1/(sqrt(3))( hat i+ hat j+ hat k) d. 1/(sqrt(3))( hat i- hat j+ hat k)

A vectors which makes equal angles with the vectors (1)/(3)(hat i-2hat j+2hat k),(1)/(5)(-4hat i-3hat k),hat j

The unit vector perpendicular to the plane passing through point P( hat i- hat j+2 hat k),\ Q(2 hat i- hat k)a n d\ R(2 hat j+ hat k)i s a) dot""2 hat i+ hat j+ hat k"\" b. sqrt(6)(2 hat i+ hat j+ hat k) c. 1/(sqrt(6))(2 hat i+ hat j+ hat k) d. 1/6(2 hat i+ hat j+ hat k)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let the sum of the maximum and the minimum values of the function f(x)...

    Text Solution

    |

  2. A square is inscribed in the circle x^2+y^2-10x-6y+30=0 One side of th...

    Text Solution

    |

  3. Let a unit vector which makes an angle of 60° with 2 hat i + 2 hat j –...

    Text Solution

    |

  4. Let alpha in (0, infty) and A = [[1, 2, alpha], [1, 0, 1], [0, 1, 2]]....

    Text Solution

    |

  5. Let alpha, beta in R. If the mean and the variable of 6 observation, -...

    Text Solution

    |

  6. If 2 and 6 are the roots of the equation ax^2 + bx + 1 = 0, then the q...

    Text Solution

    |

  7. Let the first three terms 2, p and q, which q ne 2, of a G.P. be respe...

    Text Solution

    |

  8. Let f(x) ={(-2,-2 le x le 0), (x-2, 0 lt x le 2):} h(x) = f(|x|) + |f...

    Text Solution

    |

  9. If the system of equations x + (sqrt 2 sin alpha) y + (sqrt 2 cos al...

    Text Solution

    |

  10. Let the point, on the line passing through the points P(1, -2, 3) and ...

    Text Solution

    |

  11. In a survey of 220 students of a higher secondary school, it was found...

    Text Solution

    |

  12. Let A be a square matrix of order 2 such that |A| = 2 and the sum of i...

    Text Solution

    |

  13. Let A be a 3 times 3 matrix of non-negative real elements such that A[...

    Text Solution

    |

  14. If lim(xrarr1) frac{(5x +1)^(1/3) – (x + 5)^(1/3)}{(2x + 3)^(1/2) – (x...

    Text Solution

    |

  15. Let the length of the focal chord PQ of the parabola y^2 = 12x be 15 u...

    Text Solution

    |

  16. If int0^(pi/4) frac {sin^2x}{1 + sin x cos x} dx = 1/a loge(a/3) + (pi...

    Text Solution

    |

  17. Let a = 1 + frac{"^2C2}{3!} + frac{"^3C2}{4!} + frac{"^4C2}{5!}+…, b =...

    Text Solution

    |

  18. Let the solution y = y(x) of the differential equation frac{dy}{dx}-y ...

    Text Solution

    |

  19. If the shortest distance between the lines frac{x + 2}{2} = frac{y + 3...

    Text Solution

    |

  20. Let ABC be a triangle of area 15 sqrt 2 and the vectors vec (AB) = hat...

    Text Solution

    |