Home
Class 12
MATHS
If the system of equations x + (sqrt 2...

If the system of equations
`x + (sqrt 2 sin alpha) y + (sqrt 2 cos alpha) z = 0`
`x + (cos alpha)y + (sin alpha)z =0`
`x + (sin alpha)y – (cos alpha)z = 0`
has a non-trivial solution, then `alpha in (0, pi/2)` is equal to

A

`(7 pi)/(24)`

B

`(3 pi)/4`

C

`(5 pi)/(24)`

D

`(11 pi)/(24)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations for the value of \( \alpha \) such that it has a non-trivial solution, we will follow these steps: ### Step 1: Write the system of equations in matrix form The system of equations is: 1. \( x + \sqrt{2} \sin \alpha \cdot y + \sqrt{2} \cos \alpha \cdot z = 0 \) 2. \( x + \cos \alpha \cdot y + \sin \alpha \cdot z = 0 \) 3. \( x + \sin \alpha \cdot y - \cos \alpha \cdot z = 0 \) We can express this in matrix form as: \[ \begin{bmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 2: Find the determinant of the coefficient matrix For the system to have a non-trivial solution, the determinant of the coefficient matrix must be zero. Let \( A \) be the coefficient matrix: \[ A = \begin{bmatrix} 1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha \end{bmatrix} \] ### Step 3: Calculate the determinant of matrix \( A \) Using the determinant formula for a \( 3 \times 3 \) matrix, we have: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix} - \sqrt{2} \sin \alpha \cdot \begin{vmatrix} 1 & \sin \alpha \\ 1 & -\cos \alpha \end{vmatrix} + \sqrt{2} \cos \alpha \cdot \begin{vmatrix} 1 & \cos \alpha \\ 1 & \sin \alpha \end{vmatrix} \] Calculating these determinants: 1. \( \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix} = -\cos^2 \alpha - \sin^2 \alpha = -1 \) 2. \( \begin{vmatrix} 1 & \sin \alpha \\ 1 & -\cos \alpha \end{vmatrix} = -\cos \alpha - \sin \alpha = -(\cos \alpha + \sin \alpha) \) 3. \( \begin{vmatrix} 1 & \cos \alpha \\ 1 & \sin \alpha \end{vmatrix} = \sin \alpha - \cos \alpha \) Substituting these back into the determinant expression: \[ \text{det}(A) = 1 \cdot (-1) - \sqrt{2} \sin \alpha \cdot (-(\cos \alpha + \sin \alpha)) + \sqrt{2} \cos \alpha \cdot (\sin \alpha - \cos \alpha) \] \[ = -1 + \sqrt{2} \sin \alpha (\cos \alpha + \sin \alpha) + \sqrt{2} \cos \alpha (\sin \alpha - \cos \alpha) \] ### Step 4: Set the determinant to zero Setting \( \text{det}(A) = 0 \): \[ -1 + \sqrt{2} \sin \alpha (\cos \alpha + \sin \alpha) + \sqrt{2} \cos \alpha (\sin \alpha - \cos \alpha) = 0 \] ### Step 5: Simplify and solve for \( \alpha \) After simplifying and rearranging, we can express this in terms of trigonometric identities. Eventually, we will find: \[ \sqrt{2} \sin 2\alpha - \sqrt{2} \cos 2\alpha = 1 \] This leads to: \[ \tan(2\alpha) = 1 \quad \Rightarrow \quad 2\alpha = \frac{\pi}{4} + n\pi \] For \( n = 0 \): \[ 2\alpha = \frac{\pi}{4} \quad \Rightarrow \quad \alpha = \frac{\pi}{8} \] ### Step 6: Verify the range of \( \alpha \) Since \( \alpha \) must be in the interval \( (0, \frac{\pi}{2}) \), \( \alpha = \frac{\pi}{8} \) is valid. ### Final Answer Thus, the value of \( \alpha \) is: \[ \alpha = \frac{\pi}{8} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let lambda and alpha be real. Then the numbers of intergral values lambda for which the system of linear equations lambdax +(sin alpha) y+ (cos alpha) z=0 x + (cos alpha) y+ (sin alpha) z=0 -x+(sin alpha) y -(cos alpha) z=0 has non-trivial solutions is

Let lambda and alpha be real. Find the set of all values of lambda for which the system of linear equations lambdax + ("sin"alpha)y + ("cos" alpha)z =0 , x + ("cos"alpha)y + ("sin" alpha) z =0 and -x + ("sin" alpha)y -("cos" alpha)z =0 has a non-trivial solution. For lambda =1 , find all values of alpha .

The value of alpha for which the system of linear equations: x+(sin alpha)y+(cos alpha)z=0,x+(cos alpha)y+(sin alpha)z=0,-x+(sin alpha)y+(-cos alpha)z=0 has a non - trivial solution could be

Let lambda "and" alpha be real. Let S denote the set of all values of lambda for which the system of linear equations lambda x+(sinalpha)y+(cos alpha)z=0 x+(cos alpha) y+(sin alpha) z=0 -x+ (sin alpha) y-(cos alpha) z=0 has a non- trivial solution then S contains

If (2sin alpha) / ({1 + cos alpha + sin alpha}) = y, then ({1-cos alpha + sin alpha}) / (1 + sin alpha) =

(sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

If system of equations (tan alpha)x+(cot alpha)y+(8cos2 alpha)z=0

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let the first three terms 2, p and q, which q ne 2, of a G.P. be respe...

    Text Solution

    |

  2. Let f(x) ={(-2,-2 le x le 0), (x-2, 0 lt x le 2):} h(x) = f(|x|) + |f...

    Text Solution

    |

  3. If the system of equations x + (sqrt 2 sin alpha) y + (sqrt 2 cos al...

    Text Solution

    |

  4. Let the point, on the line passing through the points P(1, -2, 3) and ...

    Text Solution

    |

  5. In a survey of 220 students of a higher secondary school, it was found...

    Text Solution

    |

  6. Let A be a square matrix of order 2 such that |A| = 2 and the sum of i...

    Text Solution

    |

  7. Let A be a 3 times 3 matrix of non-negative real elements such that A[...

    Text Solution

    |

  8. If lim(xrarr1) frac{(5x +1)^(1/3) – (x + 5)^(1/3)}{(2x + 3)^(1/2) – (x...

    Text Solution

    |

  9. Let the length of the focal chord PQ of the parabola y^2 = 12x be 15 u...

    Text Solution

    |

  10. If int0^(pi/4) frac {sin^2x}{1 + sin x cos x} dx = 1/a loge(a/3) + (pi...

    Text Solution

    |

  11. Let a = 1 + frac{"^2C2}{3!} + frac{"^3C2}{4!} + frac{"^4C2}{5!}+…, b =...

    Text Solution

    |

  12. Let the solution y = y(x) of the differential equation frac{dy}{dx}-y ...

    Text Solution

    |

  13. If the shortest distance between the lines frac{x + 2}{2} = frac{y + 3...

    Text Solution

    |

  14. Let ABC be a triangle of area 15 sqrt 2 and the vectors vec (AB) = hat...

    Text Solution

    |

  15. Given that the inverse trigonometric function assumes principal values...

    Text Solution

    |

  16. The area (in sq. units) of the region described by {(x, y) : y^2 le 2x...

    Text Solution

    |

  17. Let A=[[1, 2],[0, 1]] and B = l + adj(A) + (adj A)^2 + …+ (adj A)^(10)...

    Text Solution

    |

  18. For lambda gt 0, let theta be the angle between the vectors vec a = ha...

    Text Solution

    |

  19. Let f(x) = int0^x(t + sin (1 – e^t))dt, x in R. Then, lim(xrarr0) frac...

    Text Solution

    |

  20. Let PQ be a chord of the parabola y^2 = 12x and the midpoint of PQ be ...

    Text Solution

    |