Home
Class 12
MATHS
Given that the inverse trigonometric fun...

Given that the inverse trigonometric function assumes principal values only. Let x, y be any two real numbers in `[-1, 1]` such that `cos^(-1)x – sin^(-1)y = alpha, frac{-pi}{2} le alpha le pi`.
Then, the minimum value of `x^2 + y^2 + 2xy sin alpha` is

A

`-1`

B

`1/2`

C

`(-1)/2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of the expression \( x^2 + y^2 + 2xy \sin \alpha \) given that \( \cos^{-1} x - \sin^{-1} y = \alpha \) where \( x, y \in [-1, 1] \) and \( -\frac{\pi}{2} \leq \alpha \leq \pi \). ### Step-by-Step Solution: 1. **Rewrite the equation**: We start with the equation: \[ \cos^{-1} x - \sin^{-1} y = \alpha \] We can rewrite \( \sin^{-1} y \) as \( \frac{\pi}{2} - \cos^{-1} y \): \[ \cos^{-1} x - \left(\frac{\pi}{2} - \cos^{-1} y\right) = \alpha \] Simplifying this gives: \[ \cos^{-1} x + \cos^{-1} y = \alpha + \frac{\pi}{2} \] 2. **Use the cosine addition formula**: Using the property of cosine, we have: \[ \cos(\cos^{-1} x + \cos^{-1} y) = -\sin\left(\alpha + \frac{\pi}{2}\right) \] Since \( \sin\left(\alpha + \frac{\pi}{2}\right) = \cos \alpha \), we can write: \[ xy - \sqrt{(1-x^2)(1-y^2)} = -\cos \alpha \] 3. **Rearranging the equation**: Rearranging gives: \[ xy + \cos \alpha = \sqrt{(1-x^2)(1-y^2)} \] 4. **Square both sides**: Squaring both sides yields: \[ (xy + \cos \alpha)^2 = (1-x^2)(1-y^2) \] Expanding both sides gives: \[ x^2y^2 + 2xy \cos \alpha + \cos^2 \alpha = 1 - x^2 - y^2 + x^2y^2 \] Simplifying this leads to: \[ 2xy \cos \alpha + \cos^2 \alpha = 1 - x^2 - y^2 \] 5. **Rearranging the expression**: Rearranging gives: \[ x^2 + y^2 + 2xy \cos \alpha = 1 - \cos^2 \alpha \] Since \( 1 - \cos^2 \alpha = \sin^2 \alpha \), we have: \[ x^2 + y^2 + 2xy \sin \alpha = \sin^2 \alpha \] 6. **Finding the minimum value**: The expression \( x^2 + y^2 + 2xy \sin \alpha \) can be minimized. The minimum value of \( \sin^2 \alpha \) occurs when \( \alpha = 0 \) (since \( \sin \alpha \) ranges from -1 to 1). Thus, the minimum value of \( \sin^2 \alpha \) is 0. ### Conclusion: Therefore, the minimum value of \( x^2 + y^2 + 2xy \sin \alpha \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Given that the inverse trigonometric functions take principal values only. Then, the number of real values of x which satisfy sin^(-1)((3x)/(5))+sin^(-1)((4x)/(5))=sin^(-1)x is equal to :

If cos^(-1)x-cos^(-1)y=alpha, then x^(2)+y^(2)-2xy cos alpha is equal to

cos^(-1)x-cos^(-1)(y/2)=alpha,x in[-1,1],y in[-2,2] then the value of 4x^(2)-4xy cos alpha+y^(2) is

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

If g(x)=max(y^(2)-xy)(0le yle1) , then the minimum value of g(x) (for real x) is

If 0 le alpha le 2pi and int_(0)^(alpha)cos x dx = cos 2alpha , the : alpha =

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. If the shortest distance between the lines frac{x + 2}{2} = frac{y + 3...

    Text Solution

    |

  2. Let ABC be a triangle of area 15 sqrt 2 and the vectors vec (AB) = hat...

    Text Solution

    |

  3. Given that the inverse trigonometric function assumes principal values...

    Text Solution

    |

  4. The area (in sq. units) of the region described by {(x, y) : y^2 le 2x...

    Text Solution

    |

  5. Let A=[[1, 2],[0, 1]] and B = l + adj(A) + (adj A)^2 + …+ (adj A)^(10)...

    Text Solution

    |

  6. For lambda gt 0, let theta be the angle between the vectors vec a = ha...

    Text Solution

    |

  7. Let f(x) = int0^x(t + sin (1 – e^t))dt, x in R. Then, lim(xrarr0) frac...

    Text Solution

    |

  8. Let PQ be a chord of the parabola y^2 = 12x and the midpoint of PQ be ...

    Text Solution

    |

  9. Let f(x) = 3 sqrt (x-2) + sqrt (4 – x) be a real valued function. If a...

    Text Solution

    |

  10. Let vec a – hat i + hat j + hat k, vec b = 2 hat i + 4 hat j – 5 hat k...

    Text Solution

    |

  11. If the value of the integral int(-1)^1 frac{cos ax}{1 + 3^x} dx is 2/p...

    Text Solution

    |

  12. If the coefficient of x^4, x^5 and x^6 in the expansion of (1 + x)^n a...

    Text Solution

    |

  13. Let a relation R on N times N be defined as: (x1, y1) R (x2, y2) if ...

    Text Solution

    |

  14. The value of frac{1 times 2^2 + 2 times 3^2+…+100 times (101)^2} {1^2 ...

    Text Solution

    |

  15. If the mean of the following probability distribution of a random vari...

    Text Solution

    |

  16. Let three real numbers a, b, c be in arithmetic progression and a + 1,...

    Text Solution

    |

  17. The area (in sq. units) of the region S={z in C: | z – 1| le 2, (z +...

    Text Solution

    |

  18. Consider a hyperbola H having centre at the origin and foci on the x-a...

    Text Solution

    |

  19. Let C be a circle with radius sqrt (10) units and centre at the origin...

    Text Solution

    |

  20. Let y = y(x) be the solution of the differential equation (x^2 + 4)^2d...

    Text Solution

    |