Home
Class 12
MATHS
Let A=[[1, 2],[0, 1]] and B = l + adj(A)...

Let `A=[[1, 2],[0, 1]]` and `B = l + adj(A) + (adj A)^2 + …+ (adj A)^(10)`.
Then, the sum of all the elements of the matrix B is:

A

22

B

`-88`

C

`-124`

D

`-110`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of all elements of the matrix \( B \), which is defined as: \[ B = I + \text{adj}(A) + \text{adj}(A)^2 + \ldots + \text{adj}(A)^{10} \] where \( A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate the adjoint of \( A \) For a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), the adjoint is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Applying this to our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate powers of the adjoint Next, we need to compute \( \text{adj}(A)^n \) for \( n = 1, 2, \ldots, 10 \). - **For \( n = 1 \)**: \[ \text{adj}(A)^1 = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \] - **For \( n = 2 \)**: \[ \text{adj}(A)^2 = \text{adj}(A) \cdot \text{adj}(A) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix} \] - **For \( n = 3 \)**: \[ \text{adj}(A)^3 = \text{adj}(A)^2 \cdot \text{adj}(A) = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -6 \\ 0 & 1 \end{pmatrix} \] Continuing this pattern, we can observe that for \( n \geq 1 \): \[ \text{adj}(A)^n = \begin{pmatrix} 1 & -2n \\ 0 & 1 \end{pmatrix} \] ### Step 3: Calculate \( B \) Now we can express \( B \): \[ B = I + \text{adj}(A) + \text{adj}(A)^2 + \ldots + \text{adj}(A)^{10} \] Where \( I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). Thus, \[ B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sum_{n=1}^{10} \begin{pmatrix} 1 & -2n \\ 0 & 1 \end{pmatrix} \] Calculating the sum: 1. The sum of the first components (the diagonal elements) will be: \[ 1 + 10 = 11 \] 2. The sum of the second components (the off-diagonal elements): \[ 0 + (-2 \cdot 1) + (-2 \cdot 2) + \ldots + (-2 \cdot 10) = -2(1 + 2 + \ldots + 10) = -2 \cdot \frac{10 \cdot 11}{2} = -110 \] Thus, we have: \[ B = \begin{pmatrix} 11 & -110 \\ 0 & 11 \end{pmatrix} \] ### Step 4: Find the sum of all elements of \( B \) The sum of all elements of \( B \): \[ 11 + (-110) + 0 + 11 = 11 - 110 + 11 = -88 \] ### Final Answer The sum of all the elements of the matrix \( B \) is: \[ \boxed{-88} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let A=[[1,2],[3,4]] then (i) Find adj A (ii) Find A*adj A

adj AB -(adj B)(adj A) =

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

Let A=((1,0,-1),(0,2,2),(1,1,3)). If B=adj A,C=A^-1 and N=(|adj B|)/(|c|) then the sum of all the division of 'N' which are divisible by 6 is

If A=[[1,1,2],[1,3,4],[1,-1,3]], B=adj(A) and C=3A then (|adj(B)|)/(|C|) is

If A=[[a,b],[c,d]] then adj adj(A)

Prove that ("adj. "A)^(-1)=("adj. "A^(-1)) .

Let matrix A=[[x,y,-z1,2,31,1,2]] where x,y,z varepsilon N. If det.,(adj(adj.A))=2^(8)*(3^(4)) then the number of such matrices A is :

" If "A=[[1,-1,1],[0,2,-3],[2,1,0]]" and "B=(adj A)" and "C=5A" ,then find the value of "(|adj B)/(|C|)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Given that the inverse trigonometric function assumes principal values...

    Text Solution

    |

  2. The area (in sq. units) of the region described by {(x, y) : y^2 le 2x...

    Text Solution

    |

  3. Let A=[[1, 2],[0, 1]] and B = l + adj(A) + (adj A)^2 + …+ (adj A)^(10)...

    Text Solution

    |

  4. For lambda gt 0, let theta be the angle between the vectors vec a = ha...

    Text Solution

    |

  5. Let f(x) = int0^x(t + sin (1 – e^t))dt, x in R. Then, lim(xrarr0) frac...

    Text Solution

    |

  6. Let PQ be a chord of the parabola y^2 = 12x and the midpoint of PQ be ...

    Text Solution

    |

  7. Let f(x) = 3 sqrt (x-2) + sqrt (4 – x) be a real valued function. If a...

    Text Solution

    |

  8. Let vec a – hat i + hat j + hat k, vec b = 2 hat i + 4 hat j – 5 hat k...

    Text Solution

    |

  9. If the value of the integral int(-1)^1 frac{cos ax}{1 + 3^x} dx is 2/p...

    Text Solution

    |

  10. If the coefficient of x^4, x^5 and x^6 in the expansion of (1 + x)^n a...

    Text Solution

    |

  11. Let a relation R on N times N be defined as: (x1, y1) R (x2, y2) if ...

    Text Solution

    |

  12. The value of frac{1 times 2^2 + 2 times 3^2+…+100 times (101)^2} {1^2 ...

    Text Solution

    |

  13. If the mean of the following probability distribution of a random vari...

    Text Solution

    |

  14. Let three real numbers a, b, c be in arithmetic progression and a + 1,...

    Text Solution

    |

  15. The area (in sq. units) of the region S={z in C: | z – 1| le 2, (z +...

    Text Solution

    |

  16. Consider a hyperbola H having centre at the origin and foci on the x-a...

    Text Solution

    |

  17. Let C be a circle with radius sqrt (10) units and centre at the origin...

    Text Solution

    |

  18. Let y = y(x) be the solution of the differential equation (x^2 + 4)^2d...

    Text Solution

    |

  19. Let P be the point of intersection of the lines frac{x – 2}{1} = frac{...

    Text Solution

    |

  20. If the function f(x)={(frac{72^x – 9^x - 8^x + 1}{sqrt 2 - sqrt (1 + c...

    Text Solution

    |