Home
Class 12
MATHS
For lambda gt 0, let theta be the angle ...

For `lambda gt 0`, let `theta` be the angle between the vectors `vec a = hat i + lambda hat j – 3 hat k` and `vec b = 3 hat i – hat j + 2 hat k`. If the vectors `vec a + vec b` and `vec a – vec b` are mutually perpendicular, then the value of `(14 cos theta)^2` is equal to

A

20

B

25

C

40

D

50

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and perform the necessary calculations. ### Step 1: Define the vectors Let \[ \vec{a} = \hat{i} + \lambda \hat{j} - 3 \hat{k} \] and \[ \vec{b} = 3 \hat{i} - \hat{j} + 2 \hat{k}. \] ### Step 2: Condition of perpendicularity The vectors \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\) are mutually perpendicular. Therefore, we can write: \[ (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0. \] ### Step 3: Calculate \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\) Calculating \(\vec{a} + \vec{b}\): \[ \vec{a} + \vec{b} = (\hat{i} + \lambda \hat{j} - 3 \hat{k}) + (3 \hat{i} - \hat{j} + 2 \hat{k}) = (1 + 3) \hat{i} + (\lambda - 1) \hat{j} + (-3 + 2) \hat{k} = 4 \hat{i} + (\lambda - 1) \hat{j} - \hat{k}. \] Calculating \(\vec{a} - \vec{b}\): \[ \vec{a} - \vec{b} = (\hat{i} + \lambda \hat{j} - 3 \hat{k}) - (3 \hat{i} - \hat{j} + 2 \hat{k}) = (1 - 3) \hat{i} + (\lambda + 1) \hat{j} + (-3 - 2) \hat{k} = -2 \hat{i} + (\lambda + 1) \hat{j} - 5 \hat{k}. \] ### Step 4: Dot product of \(\vec{a} + \vec{b}\) and \(\vec{a} - \vec{b}\) Now, we find the dot product: \[ (4 \hat{i} + (\lambda - 1) \hat{j} - \hat{k}) \cdot (-2 \hat{i} + (\lambda + 1) \hat{j} - 5 \hat{k}) = 0. \] Calculating the dot product: \[ 4 \cdot (-2) + (\lambda - 1)(\lambda + 1) + (-1)(-5) = 0. \] This simplifies to: \[ -8 + (\lambda^2 - 1) + 5 = 0. \] Thus, \[ \lambda^2 - 4 = 0. \] ### Step 5: Solve for \(\lambda\) This gives: \[ \lambda^2 = 4 \implies \lambda = 2 \quad (\text{since } \lambda > 0). \] ### Step 6: Substitute \(\lambda\) back into \(\vec{a}\) and \(\vec{b}\) Now substituting \(\lambda = 2\): \[ \vec{a} = \hat{i} + 2 \hat{j} - 3 \hat{k}, \quad \vec{b} = 3 \hat{i} - \hat{j} + 2 \hat{k}. \] ### Step 7: Calculate \(\cos \theta\) To find \(\cos \theta\), we use the formula: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}. \] Calculating \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = (1)(3) + (2)(-1) + (-3)(2) = 3 - 2 - 6 = -5. \] Calculating \(|\vec{a}|\): \[ |\vec{a}| = \sqrt{1^2 + 2^2 + (-3)^2} = \sqrt{1 + 4 + 9} = \sqrt{14}. \] Calculating \(|\vec{b}|\): \[ |\vec{b}| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14}. \] ### Step 8: Substitute into \(\cos \theta\) Now substituting into the cosine formula: \[ \cos \theta = \frac{-5}{\sqrt{14} \cdot \sqrt{14}} = \frac{-5}{14}. \] ### Step 9: Calculate \((14 \cos \theta)^2\) Now we calculate: \[ (14 \cos \theta)^2 = (14 \cdot \frac{-5}{14})^2 = (-5)^2 = 25. \] ### Final Answer Thus, the value of \((14 \cos \theta)^2\) is: \[ \boxed{25}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec a and vec b where: vec a=2hat i-3hat j+hat k and vec b=hat i+hat j-2hat k

Find angle between the vectors vec a=hat i+hat j-hat k and vec b=hat i-hat j+hat k

If vec A = hat i + 3 hat j + 2 hat K and vec B = 3 hat i + hat j + 2 hat k , then find the vector product vec A xx vec B .

Find the angle between the vectors vec a and vec b where: vec a=2hat i-hat j+2hat k and vec b=4hat i+4hat j-2hat k

Find the angle between the vectors vec a and vec b where: vec a=3hat i-2hat j-jhat k and vec b=4hat i-hat j+8hat k

If vec a=5hat i-hat j-3hat k and vec b=hat i+3hat j-5hat k then show that the vectors vec a+vec b and vec a-vec b are perpendicular.

If vec a=5hat i-hat j-3hat k, and vec b=hat i+3hat j-5hat k then show that the vectors vec a+vec b and vec a-vec b are perpendicular.

Find the angle between the vectors vec a and vec b where: vec a=hat i-hat j and vec b=hat j+hat k

If vec a=5hat i-hat j-3hat k and vec b=hat i+3hat j-5hat k then show that the vectors vec a+vec b and vec a-vec b are orthogonal.

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. The area (in sq. units) of the region described by {(x, y) : y^2 le 2x...

    Text Solution

    |

  2. Let A=[[1, 2],[0, 1]] and B = l + adj(A) + (adj A)^2 + …+ (adj A)^(10)...

    Text Solution

    |

  3. For lambda gt 0, let theta be the angle between the vectors vec a = ha...

    Text Solution

    |

  4. Let f(x) = int0^x(t + sin (1 – e^t))dt, x in R. Then, lim(xrarr0) frac...

    Text Solution

    |

  5. Let PQ be a chord of the parabola y^2 = 12x and the midpoint of PQ be ...

    Text Solution

    |

  6. Let f(x) = 3 sqrt (x-2) + sqrt (4 – x) be a real valued function. If a...

    Text Solution

    |

  7. Let vec a – hat i + hat j + hat k, vec b = 2 hat i + 4 hat j – 5 hat k...

    Text Solution

    |

  8. If the value of the integral int(-1)^1 frac{cos ax}{1 + 3^x} dx is 2/p...

    Text Solution

    |

  9. If the coefficient of x^4, x^5 and x^6 in the expansion of (1 + x)^n a...

    Text Solution

    |

  10. Let a relation R on N times N be defined as: (x1, y1) R (x2, y2) if ...

    Text Solution

    |

  11. The value of frac{1 times 2^2 + 2 times 3^2+…+100 times (101)^2} {1^2 ...

    Text Solution

    |

  12. If the mean of the following probability distribution of a random vari...

    Text Solution

    |

  13. Let three real numbers a, b, c be in arithmetic progression and a + 1,...

    Text Solution

    |

  14. The area (in sq. units) of the region S={z in C: | z – 1| le 2, (z +...

    Text Solution

    |

  15. Consider a hyperbola H having centre at the origin and foci on the x-a...

    Text Solution

    |

  16. Let C be a circle with radius sqrt (10) units and centre at the origin...

    Text Solution

    |

  17. Let y = y(x) be the solution of the differential equation (x^2 + 4)^2d...

    Text Solution

    |

  18. Let P be the point of intersection of the lines frac{x – 2}{1} = frac{...

    Text Solution

    |

  19. If the function f(x)={(frac{72^x – 9^x - 8^x + 1}{sqrt 2 - sqrt (1 + c...

    Text Solution

    |

  20. Let f : R rarr R be a thrice differentiable function such that f(0) = ...

    Text Solution

    |