Home
Class 12
MATHS
Let f(x) = int0^x(t + sin (1 – e^t))dt, ...

Let `f(x) = int_0^x(t + sin (1 – e^t))dt, x in R`. Then, `lim_(xrarr0) frac{f(x)}{x^3}` is equal to

A

`-frac{1}{6}`

B

`2/3`

C

`-frac{2}{3}`

D

`1/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{f(x)}{x^3} \] where \[ f(x) = \int_0^x (t + \sin(1 - e^t)) dt. \] ### Step 1: Evaluate \( f(0) \) First, we find \( f(0) \): \[ f(0) = \int_0^0 (t + \sin(1 - e^t)) dt = 0. \] ### Step 2: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0 as \( x \to 0 \), we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f(x)}{x^3} = \lim_{x \to 0} \frac{f'(x)}{3x^2}. \] ### Step 3: Differentiate \( f(x) \) Using the Fundamental Theorem of Calculus, we differentiate \( f(x) \): \[ f'(x) = x + \sin(1 - e^x). \] ### Step 4: Substitute into the limit Now we substitute \( f'(x) \) into the limit: \[ \lim_{x \to 0} \frac{x + \sin(1 - e^x)}{3x^2}. \] ### Step 5: Evaluate the limit As \( x \to 0 \), we need to evaluate the numerator: 1. \( x \to 0 \) 2. For \( \sin(1 - e^x) \): - As \( x \to 0 \), \( e^x \to 1 \) so \( 1 - e^x \to 0 \). - Therefore, \( \sin(1 - e^x) \to \sin(0) = 0 \). Thus, the numerator approaches \( 0 + 0 = 0 \) as \( x \to 0 \), leading to another \( \frac{0}{0} \) form. We apply L'Hôpital's Rule again: \[ \lim_{x \to 0} \frac{f'(x)}{3x^2} = \lim_{x \to 0} \frac{1 + \cos(1 - e^x)(-e^x)}{6x}. \] ### Step 6: Differentiate again Now we differentiate the numerator: 1. The derivative of \( 1 \) is \( 0 \). 2. For \( \cos(1 - e^x)(-e^x) \), we apply the product rule: - The derivative is \( -e^x \cos(1 - e^x) + \sin(1 - e^x)e^x \). Thus, we have: \[ \lim_{x \to 0} \frac{-e^x \cos(1 - e^x) + \sin(1 - e^x)e^x}{6}. \] ### Step 7: Substitute \( x = 0 \) Now substituting \( x = 0 \): 1. \( e^0 = 1 \) 2. \( \cos(1 - e^0) = \cos(0) = 1 \) 3. \( \sin(1 - e^0) = \sin(0) = 0 \) Thus, the limit becomes: \[ \frac{-1 \cdot 1 + 0}{6} = \frac{-1}{6}. \] ### Final Result Therefore, the limit is: \[ \lim_{x \to 0} \frac{f(x)}{x^3} = -\frac{1}{6}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(1)|x-t|dt, then

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :

Let f(x)={(1)/(x^(2))int_(0)^(x)sin(t^(2))dt for x!=0(a in R) and a,for x=0 If f(x) is continuous at x=0, then the value of a is

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let A=[[1, 2],[0, 1]] and B = l + adj(A) + (adj A)^2 + …+ (adj A)^(10)...

    Text Solution

    |

  2. For lambda gt 0, let theta be the angle between the vectors vec a = ha...

    Text Solution

    |

  3. Let f(x) = int0^x(t + sin (1 – e^t))dt, x in R. Then, lim(xrarr0) frac...

    Text Solution

    |

  4. Let PQ be a chord of the parabola y^2 = 12x and the midpoint of PQ be ...

    Text Solution

    |

  5. Let f(x) = 3 sqrt (x-2) + sqrt (4 – x) be a real valued function. If a...

    Text Solution

    |

  6. Let vec a – hat i + hat j + hat k, vec b = 2 hat i + 4 hat j – 5 hat k...

    Text Solution

    |

  7. If the value of the integral int(-1)^1 frac{cos ax}{1 + 3^x} dx is 2/p...

    Text Solution

    |

  8. If the coefficient of x^4, x^5 and x^6 in the expansion of (1 + x)^n a...

    Text Solution

    |

  9. Let a relation R on N times N be defined as: (x1, y1) R (x2, y2) if ...

    Text Solution

    |

  10. The value of frac{1 times 2^2 + 2 times 3^2+…+100 times (101)^2} {1^2 ...

    Text Solution

    |

  11. If the mean of the following probability distribution of a random vari...

    Text Solution

    |

  12. Let three real numbers a, b, c be in arithmetic progression and a + 1,...

    Text Solution

    |

  13. The area (in sq. units) of the region S={z in C: | z – 1| le 2, (z +...

    Text Solution

    |

  14. Consider a hyperbola H having centre at the origin and foci on the x-a...

    Text Solution

    |

  15. Let C be a circle with radius sqrt (10) units and centre at the origin...

    Text Solution

    |

  16. Let y = y(x) be the solution of the differential equation (x^2 + 4)^2d...

    Text Solution

    |

  17. Let P be the point of intersection of the lines frac{x – 2}{1} = frac{...

    Text Solution

    |

  18. If the function f(x)={(frac{72^x – 9^x - 8^x + 1}{sqrt 2 - sqrt (1 + c...

    Text Solution

    |

  19. Let f : R rarr R be a thrice differentiable function such that f(0) = ...

    Text Solution

    |

  20. Consider the function f : R rarr R defined by f(x) = frac{2x}{sqrt(1-9...

    Text Solution

    |