Home
Class 12
MATHS
For alpha, beta in R and a natural numbe...

For `alpha, beta in R` and a natural number n, let `A_r = |[r, 1, (n^2)/2 + alpha],[2r, 2, n^2 – beta],[3r – 2, 3, frac{n(3n - 1)}{2}]|`. Then `2A_(10) – A_8` is

A

0

B

`4 alpha + 2 beta`

C

2n

D

`2 alpha + 4 beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( A_r \) given by: \[ A_r = \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ 2r & 2 & n^2 - \beta \\ 3r - 2 & 3 & \frac{n(3n - 1)}{2} \end{vmatrix} \] We are tasked with finding \( 2A_{10} - A_8 \). ### Step 1: Factor out common terms First, we can factor out common terms from the rows. Notice that we can factor out 2 from the second row: \[ A_r = 2 \begin{vmatrix} r & 1 & \frac{n^2}{2} + \alpha \\ r & 1 & \frac{n^2 - \beta}{2} \\ 3r - 2 & 3 & \frac{n(3n - 1)}{2} \end{vmatrix} \] ### Step 2: Row operation Next, we perform a row operation \( R_1 \leftarrow R_1 - R_2 \): \[ A_r = 2 \begin{vmatrix} 0 & 0 & \frac{n^2}{2} + \alpha - \frac{n^2 - \beta}{2} \\ r & 1 & \frac{n^2 - \beta}{2} \\ 3r - 2 & 3 & \frac{n(3n - 1)}{2} \end{vmatrix} \] This simplifies to: \[ A_r = 2 \begin{vmatrix} 0 & 0 & \alpha + \frac{\beta}{2} \\ r & 1 & \frac{n^2 - \beta}{2} \\ 3r - 2 & 3 & \frac{n(3n - 1)}{2} \end{vmatrix} \] ### Step 3: Evaluate the determinant Since the first column has zeros, we can expand the determinant along the first column: \[ A_r = 2 \left( \alpha + \frac{\beta}{2} \right) \begin{vmatrix} r & 1 \\ 3r - 2 & 3 \end{vmatrix} \] Calculating the 2x2 determinant: \[ \begin{vmatrix} r & 1 \\ 3r - 2 & 3 \end{vmatrix} = r \cdot 3 - 1 \cdot (3r - 2) = 3r - (3r - 2) = 2 \] Thus, \[ A_r = 2 \left( \alpha + \frac{\beta}{2} \right) \cdot 2 = 4 \left( \alpha + \frac{\beta}{2} \right) = 4\alpha + 2\beta \] ### Step 4: Calculate \( A_{10} \) and \( A_8 \) Now we can find \( A_{10} \) and \( A_8 \): \[ A_{10} = 4\alpha + 2\beta \] \[ A_8 = 4\alpha + 2\beta \] ### Step 5: Calculate \( 2A_{10} - A_8 \) Now substituting these values into the expression \( 2A_{10} - A_8 \): \[ 2A_{10} - A_8 = 2(4\alpha + 2\beta) - (4\alpha + 2\beta) \] \[ = 8\alpha + 4\beta - 4\alpha - 2\beta = 4\alpha + 2\beta \] ### Final Answer Thus, the final answer is: \[ \boxed{4\alpha + 2\beta} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let Delta_r=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3n-1))/2]|dot Show that sum_(r=1)^n Delta_r=0

If S_r = |[2r,x,n(n+1)],[6r^2-1,y,n^2(2n+3)],[4r^3-2nr,z,n^3(n+1)]| then sum_(r=1)^nS_r does not depend on-

If D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)| , then the value of sum_(r=1)^(n) D_(r) , is

Let Delta_(r)=|(2^(r-1),2(3^(r-1)),4(5^(r-1))),(alpha, beta, gamma),(2^(n)-1,3^(n)-1,5^(n)-1)| for r=1,2,………..n . The sum_(r=1)Delta_(r) is

If A_r=|[1,r,2^r],[2,n,n^2],[n,(n(n+1))/2, 2^(n+1)]|, the value of sum_(r=1)^n A_r is (A) n (B) 2n (C) -2n (D) n^2

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. The shortest distance between the lines frac{x-3}{2} = frac{y+15}{-7} ...

    Text Solution

    |

  2. A circle is inscribed in an equilateral triangle of side of length 12....

    Text Solution

    |

  3. For alpha, beta in R and a natural number n, let Ar = |[r, 1, (n^2)/2 ...

    Text Solution

    |

  4. If A(3, 1, -1), B(5/3, 7/3, 1/3), C(2, 2, 1) and D(10/3, 2/3,(-1)/3) a...

    Text Solution

    |

  5. The function f(x) = frac{x^2 + 2x – 15}{x^2 – 4x + 9}, x in R is

    Text Solution

    |

  6. Let C be the circle of minimum area touching the parabola y = 6 – x^2 ...

    Text Solution

    |

  7. Let y = y(x) be the solution of the differential equation (x + x^2)(dy...

    Text Solution

    |

  8. The number of triangles whose vertices are at the vertices of a regula...

    Text Solution

    |

  9. If f(x) ={(x^3 sin (1/x), x ne 0), (0, x = 0):}, then

    Text Solution

    |

  10. Let alpha, beta be the distinct roots of the equation x^2 – (t^2 – 5t ...

    Text Solution

    |

  11. The interval in which the function f(x) = x^x, x > 0 is strictly incre...

    Text Solution

    |

  12. int0^(pi//4) frac{cos^2 x sin^2 x}{cos^3 x + sin^3x} dx is equal to

    Text Solution

    |

  13. The mean and standard deviation of 20 observations are found to be 10 ...

    Text Solution

    |

  14. Let a variable line of slope m > 0 passing through the point (4, -9) i...

    Text Solution

    |

  15. Let A = {n in [100, 700] cap N : n is neither a multiple of 3 nor a mu...

    Text Solution

    |

  16. Let alpha beta gamma = 45, alpha, beta, gamma in R. If X(alpha, 1,2) +...

    Text Solution

    |

  17. Let the first term of a series be T1 = 6 and its rth term Tr = 3T(r-1)...

    Text Solution

    |

  18. Let L1, L2 be the lines passing through the point P(0, 1) and touching...

    Text Solution

    |

  19. Let rk=frac{int0^1(1 – x^7)^k dx}{int0^1(1 – x^7)^(k+1) dx, k in N. Th...

    Text Solution

    |

  20. If the second, third and fourth terms in the expansion of (x + y)^n ar...

    Text Solution

    |