Home
Class 12
MATHS
If f(x) ={(x^3 sin (1/x), x ne 0), (0, x...

If `f(x) ={(x^3 sin (1/x), x ne 0), (0, x = 0):}`, then

A

`f”(2/pi) = frac{12 – pi^2}{2 pi}`

B

`f”(2/pi) = frac{24 – pi^2}{2 pi}`

C

`f"(0) = 0`

D

`f"(0) = 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function defined as: \[ f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] ### Step 1: Find the First Derivative \( f'(x) \) For \( x \neq 0 \), we can use the product rule to differentiate \( f(x) = x^3 \sin\left(\frac{1}{x}\right) \). Using the product rule: \[ f'(x) = u'v + uv' \] where \( u = x^3 \) and \( v = \sin\left(\frac{1}{x}\right) \). Calculating \( u' \) and \( v' \): - \( u' = 3x^2 \) - To find \( v' \), we apply the chain rule: \[ v' = \cos\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) = -\frac{\cos\left(\frac{1}{x}\right)}{x^2} \] Now substituting back into the product rule: \[ f'(x) = 3x^2 \sin\left(\frac{1}{x}\right) + x^3 \left(-\frac{\cos\left(\frac{1}{x}\right)}{x^2}\right) \] \[ f'(x) = 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right) \] ### Step 2: Find the Second Derivative \( f''(x) \) Now we differentiate \( f'(x) \): \[ f'(x) = 3x^2 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right) \] Using the product rule again: 1. Differentiate \( 3x^2 \sin\left(\frac{1}{x}\right) \): - \( u = 3x^2 \) and \( v = \sin\left(\frac{1}{x}\right) \) - \( u' = 6x \) - \( v' = -\frac{\cos\left(\frac{1}{x}\right)}{x^2} \) Thus, \[ \frac{d}{dx}(3x^2 \sin\left(\frac{1}{x}\right)) = 6x \sin\left(\frac{1}{x}\right) + 3x^2 \left(-\frac{\cos\left(\frac{1}{x}\right)}{x^2}\right) = 6x \sin\left(\frac{1}{x}\right) - 3 \cos\left(\frac{1}{x}\right) \] 2. Differentiate \( -x \cos\left(\frac{1}{x}\right) \): - \( u = -x \) and \( v = \cos\left(\frac{1}{x}\right) \) - \( u' = -1 \) - \( v' = \frac{\sin\left(\frac{1}{x}\right)}{x^2} \) Thus, \[ \frac{d}{dx}(-x \cos\left(\frac{1}{x}\right)) = -\cos\left(\frac{1}{x}\right) + x \cdot \frac{\sin\left(\frac{1}{x}\right)}{x^2} = -\cos\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x} \] Combining these results: \[ f''(x) = \left(6x \sin\left(\frac{1}{x}\right) - 3 \cos\left(\frac{1}{x}\right)\right) + \left(-\cos\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x}\right) \] \[ f''(x) = 6x \sin\left(\frac{1}{x}\right) - 4 \cos\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x} \] ### Step 3: Evaluate \( f''(0) \) To find \( f''(0) \), we need to check the limit as \( x \to 0 \): \[ f''(0) = \lim_{x \to 0} \left(6x \sin\left(\frac{1}{x}\right) - 4 \cos\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x}\right) \] As \( x \to 0 \): - \( 6x \sin\left(\frac{1}{x}\right) \to 0 \) - \( -4 \cos\left(\frac{1}{x}\right) \) oscillates between -4 and 4 (not defined) - \( \frac{\sin\left(\frac{1}{x}\right)}{x} \) oscillates (not defined) Thus, \( f''(0) \) is not defined. ### Conclusion The second derivative \( f''(x) \) is given by: \[ f''(x) = 6x \sin\left(\frac{1}{x}\right) - 4 \cos\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x} \] And \( f''(0) \) is not defined.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

If f(x)={(x^(k) sin((1)/(x))",",x ne 0),(0",", x =0):} is continuous at x = 0, then

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let y = y(x) be the solution of the differential equation (x + x^2)(dy...

    Text Solution

    |

  2. The number of triangles whose vertices are at the vertices of a regula...

    Text Solution

    |

  3. If f(x) ={(x^3 sin (1/x), x ne 0), (0, x = 0):}, then

    Text Solution

    |

  4. Let alpha, beta be the distinct roots of the equation x^2 – (t^2 – 5t ...

    Text Solution

    |

  5. The interval in which the function f(x) = x^x, x > 0 is strictly incre...

    Text Solution

    |

  6. int0^(pi//4) frac{cos^2 x sin^2 x}{cos^3 x + sin^3x} dx is equal to

    Text Solution

    |

  7. The mean and standard deviation of 20 observations are found to be 10 ...

    Text Solution

    |

  8. Let a variable line of slope m > 0 passing through the point (4, -9) i...

    Text Solution

    |

  9. Let A = {n in [100, 700] cap N : n is neither a multiple of 3 nor a mu...

    Text Solution

    |

  10. Let alpha beta gamma = 45, alpha, beta, gamma in R. If X(alpha, 1,2) +...

    Text Solution

    |

  11. Let the first term of a series be T1 = 6 and its rth term Tr = 3T(r-1)...

    Text Solution

    |

  12. Let L1, L2 be the lines passing through the point P(0, 1) and touching...

    Text Solution

    |

  13. Let rk=frac{int0^1(1 – x^7)^k dx}{int0^1(1 – x^7)^(k+1) dx, k in N. Th...

    Text Solution

    |

  14. If the second, third and fourth terms in the expansion of (x + y)^n ar...

    Text Solution

    |

  15. For n in N, if cot^(-1)3 + cot^(-1)4 + cot^(-1)5 + cot^(-1)n = pi/4, t...

    Text Solution

    |

  16. Let vec a = 2 hat i – 3 hat j + 4 hat k, vec b = 3 hat i + 4 hat j – 5...

    Text Solution

    |

  17. Let x1, x2, x3, x4 be the solution of the equation 4x^4 + 8x^3 – 17 x^...

    Text Solution

    |

  18. Let P be the point (10, -2, -1) and Q be the foot of the perpendicular...

    Text Solution

    |

  19. Let a conic C pass through the point (4, -2) and P(x, y), x ge 3, be a...

    Text Solution

    |

  20. A software company sets up m number of computer systems to finish an a...

    Text Solution

    |