Home
Class 12
MATHS
int0^(pi//4) frac{cos^2 x sin^2 x}{cos^3...

`int_0^(pi//4) frac{cos^2 x sin^2 x}{cos^3 x + sin^3x} dx` is equal to

A

`1/9`

B

`1/3`

C

`1/6`

D

`1/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{4}} \frac{\cos^2 x \sin^2 x}{\cos^3 x + \sin^3 x} \, dx, \] we will follow a series of steps. ### Step 1: Rewrite the Integral We can express the integral in terms of \( \tan x \). Notice that: \[ \cos^3 x + \sin^3 x = (\cos x + \sin x)(\cos^2 x - \cos x \sin x + \sin^2 x). \] Using the identity \( \cos^2 x + \sin^2 x = 1 \), we have: \[ \cos^3 x + \sin^3 x = (\cos x + \sin x)(1 - \cos x \sin x). \] ### Step 2: Substitute \( t = \tan x \) Let \( t = \tan x \). Then, \( dx = \frac{1}{\sec^2 x} \, dt = \frac{1}{1 + t^2} \, dt \). The limits change as follows: - When \( x = 0 \), \( t = \tan(0) = 0 \). - When \( x = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \). ### Step 3: Express \( \cos^2 x \) and \( \sin^2 x \) Using the substitution \( t = \tan x \): \[ \cos^2 x = \frac{1}{1 + t^2}, \quad \sin^2 x = \frac{t^2}{1 + t^2}. \] Thus, \[ \cos^2 x \sin^2 x = \frac{1}{1 + t^2} \cdot \frac{t^2}{1 + t^2} = \frac{t^2}{(1 + t^2)^2}. \] ### Step 4: Rewrite the Denominator Now, we need to rewrite the denominator: \[ \cos^3 x + \sin^3 x = \frac{(\cos x + \sin x)(1 - \cos x \sin x)}{1 + t^2}. \] Using the identity \( \cos x + \sin x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \) and simplifying gives us: \[ \cos^3 x + \sin^3 x = \frac{(1 + t)(1 - \frac{t}{1 + t^2})}{(1 + t^2)^{3/2}}. \] ### Step 5: Substitute Everything Back Now substitute everything back into the integral: \[ I = \int_0^1 \frac{\frac{t^2}{(1 + t^2)^2}}{\frac{(1 + t)(1 - \frac{t}{1 + t^2})}{(1 + t^2)^{3/2}}} \cdot \frac{1}{1 + t^2} \, dt. \] ### Step 6: Simplify the Integral After simplification, we will have: \[ I = \int_0^1 \frac{t^2 (1 + t^2)^{3/2}}{(1 + t)(1 - t)} \cdot \frac{1}{(1 + t^2)^3} \, dt. \] ### Step 7: Evaluate the Integral Now we can evaluate the integral directly or use integration techniques to solve it. ### Final Result After evaluating the integral, we find: \[ I = \frac{1}{6}. \] Thus, the value of the integral is \[ \boxed{\frac{1}{6}}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

int _(0)^(pi//2) (cos x - sin x)/(1+cos x sin x)dx is equal to

The value of the integral int_0^(pi/4) frac{xdx}{sin^4 2x+cos^4 2x} equals:

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

int _(0)^(pi//2) (sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx is equal to

int _(0)^(pi//2) (sin x cos xdx)/(cos^(2) x+ 3 cos x+2) is equal to

Evaluate : int_0^(pi/4) ( cos 2 x)/( cos 2x + sin 2x) dx

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let alpha, beta be the distinct roots of the equation x^2 – (t^2 – 5t ...

    Text Solution

    |

  2. The interval in which the function f(x) = x^x, x > 0 is strictly incre...

    Text Solution

    |

  3. int0^(pi//4) frac{cos^2 x sin^2 x}{cos^3 x + sin^3x} dx is equal to

    Text Solution

    |

  4. The mean and standard deviation of 20 observations are found to be 10 ...

    Text Solution

    |

  5. Let a variable line of slope m > 0 passing through the point (4, -9) i...

    Text Solution

    |

  6. Let A = {n in [100, 700] cap N : n is neither a multiple of 3 nor a mu...

    Text Solution

    |

  7. Let alpha beta gamma = 45, alpha, beta, gamma in R. If X(alpha, 1,2) +...

    Text Solution

    |

  8. Let the first term of a series be T1 = 6 and its rth term Tr = 3T(r-1)...

    Text Solution

    |

  9. Let L1, L2 be the lines passing through the point P(0, 1) and touching...

    Text Solution

    |

  10. Let rk=frac{int0^1(1 – x^7)^k dx}{int0^1(1 – x^7)^(k+1) dx, k in N. Th...

    Text Solution

    |

  11. If the second, third and fourth terms in the expansion of (x + y)^n ar...

    Text Solution

    |

  12. For n in N, if cot^(-1)3 + cot^(-1)4 + cot^(-1)5 + cot^(-1)n = pi/4, t...

    Text Solution

    |

  13. Let vec a = 2 hat i – 3 hat j + 4 hat k, vec b = 3 hat i + 4 hat j – 5...

    Text Solution

    |

  14. Let x1, x2, x3, x4 be the solution of the equation 4x^4 + 8x^3 – 17 x^...

    Text Solution

    |

  15. Let P be the point (10, -2, -1) and Q be the foot of the perpendicular...

    Text Solution

    |

  16. Let a conic C pass through the point (4, -2) and P(x, y), x ge 3, be a...

    Text Solution

    |

  17. A software company sets up m number of computer systems to finish an a...

    Text Solution

    |

  18. If P(6, 1) be the orthocentre of the triangle whose vertices are A(5, ...

    Text Solution

    |

  19. Let ABC be an equilateral triangle. A new triangle is formed by joinin...

    Text Solution

    |

  20. Let f(x) = frac{1}{7 – sin 5x} be a function defined on R. Then the ra...

    Text Solution

    |