Home
Class 12
MATHS
The set of all alpha, for which the vect...

The set of all `alpha`, for which the vector `vec a = alpha t hat i + 6 hat j – 3 hat k` and `vec b = t hat i – 2 hat j – 2 alpha t hat k` are inclined at a obtuse angle for all `t in R`, is

A

`[0, 1)`

B

`(- 2, 0]`

C

`(-4/3 , 1)`

D

`(-4/3 , 0 ]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the set of all values of \( \alpha \) for which the vectors \( \vec{a} = \alpha \hat{i} + 6 \hat{j} - 3 \hat{k} \) and \( \vec{b} = \hat{i} - 2 \hat{j} - 2\alpha \hat{k} \) are inclined at an obtuse angle for all \( t \in \mathbb{R} \), we need to analyze the dot product of the two vectors. ### Step 1: Calculate the dot product of the vectors The dot product \( \vec{a} \cdot \vec{b} \) is given by: \[ \vec{a} \cdot \vec{b} = (\alpha \hat{i} + 6 \hat{j} - 3 \hat{k}) \cdot (\hat{i} - 2 \hat{j} - 2\alpha \hat{k}) \] Calculating this, we have: \[ \vec{a} \cdot \vec{b} = \alpha \cdot 1 + 6 \cdot (-2) + (-3) \cdot (-2\alpha) \] \[ = \alpha - 12 + 6\alpha \] \[ = 7\alpha - 12 \] ### Step 2: Set the condition for obtuse angle For the vectors to be inclined at an obtuse angle, the dot product must be less than zero: \[ 7\alpha - 12 < 0 \] ### Step 3: Solve the inequality Rearranging the inequality gives: \[ 7\alpha < 12 \] \[ \alpha < \frac{12}{7} \] ### Step 4: Determine the range of \( \alpha \) Next, we need to ensure that this condition holds for all \( t \in \mathbb{R} \). Since the expression \( 7\alpha - 12 \) is linear in \( \alpha \), we also need to check if there are any restrictions on \( \alpha \) that would make the quadratic formed by the dot product non-negative for some \( t \). ### Step 5: Analyze the quadratic expression The expression \( \vec{a} \cdot \vec{b} \) can be viewed as a quadratic in \( t \): \[ \alpha t^2 + 6\alpha t - 12 < 0 \] This is a quadratic equation in \( t \) with coefficients: - \( A = \alpha \) - \( B = 6\alpha \) - \( C = -12 \) For this quadratic to be negative for all \( t \), the discriminant must be less than zero: \[ D = B^2 - 4AC < 0 \] Calculating the discriminant: \[ D = (6\alpha)^2 - 4(\alpha)(-12) = 36\alpha^2 + 48\alpha \] Setting the discriminant less than zero: \[ 36\alpha^2 + 48\alpha < 0 \] Factoring out \( 12\alpha \): \[ 12\alpha(3\alpha + 4) < 0 \] ### Step 6: Solve the inequality The critical points are \( \alpha = 0 \) and \( \alpha = -\frac{4}{3} \). We analyze the intervals: 1. \( \alpha < -\frac{4}{3} \) 2. \( -\frac{4}{3} < \alpha < 0 \) 3. \( \alpha > 0 \) Testing these intervals: - For \( \alpha < -\frac{4}{3} \), the product is positive. - For \( -\frac{4}{3} < \alpha < 0 \), the product is negative. - For \( \alpha > 0 \), the product is positive. Thus, the solution for \( \alpha \) that satisfies both conditions is: \[ -\frac{4}{3} < \alpha < 0 \] ### Final Answer The set of all \( \alpha \) for which the vectors are inclined at an obtuse angle for all \( t \in \mathbb{R} \) is: \[ \alpha \in \left(-\frac{4}{3}, 0\right) \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

Find the angle between the vectors vec A = hat I + 2 hat j- hat k and vec B =- hat I + hatj - 2 hat k .

Show that vectors vec A =2 hat I -3 hat j - hat k and vec vec B =- 6 hat I + 9 hat j + 3 hat k are paarallel.

Find the angel between the vectors vec a=hat i-hat j+hat k and vec b=hat i+hat j-hat k

Find angle between the vectors vec a=hat i+hat j-hat k and vec b=hat i-hat j+hat k

If vec A =4 hat I + 6 hat j -3 hat k and vec B =- 2 hat I -5 hat j + 7 hat k , find the angle between vec A and vec B .

If vec A = hat i + 3 hat j + 2 hat K and vec B = 3 hat i + hat j + 2 hat k , then find the vector product vec A xx vec B .

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

Find the angle between the vectors vec a and vec b where: vec a=2hat i-3hat j+hat k and vec b=hat i+hat j-2hat k

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let the circles C1 : (x - alpha)^2 + (y - beta)^2 = r1^2and C2 :(x – 8...

    Text Solution

    |

  2. The sum of all the solutions of the equation (8)^(2x) – 16.(8)^x + 48 ...

    Text Solution

    |

  3. The set of all alpha, for which the vector vec a = alpha t hat i + 6 h...

    Text Solution

    |

  4. Let [t] be the greatest integer less than or equal to t. Let A be the ...

    Text Solution

    |

  5. If sin x = -3/5, where pi < x < (3 pi)/2, then 80 (tan^2 x – cos x) is...

    Text Solution

    |

  6. Let I(x) = int frac{6}{sin^2 x (1 – cot x)^2} dx. If I(0) = 3, then I(...

    Text Solution

    |

  7. Let the sum of two positive integers be 24. If the probability, that t...

    Text Solution

    |

  8. The equations of two sides AB and AC of a triangle ABC are 4x + y = 14...

    Text Solution

    |

  9. If the shortest distance between the lines L1 : vec r = (2 + lambda)...

    Text Solution

    |

  10. If the set R = {(a, b) : a + 5b = 42, a, b in N}has m elements and sum...

    Text Solution

    |

  11. Let H : frac{-x^2}{a^2} + frac{y^2}{b^2} =1 be the hyperbola, whose ec...

    Text Solution

    |

  12. Let P(x, y, z) be a point in the first octant, whose projection in the...

    Text Solution

    |

  13. Let f(x) = 4cos^3 x + 3 sqrt 3 cos^2 x - 10. The number of points of l...

    Text Solution

    |

  14. Let A = [[2, a, 0], [1, 3, 1], [0, 5, b]]. If A^3 = 4 A^2 -A-21 I, whe...

    Text Solution

    |

  15. For the function f(x) = (cos x) - x + 1, x in R, between the following...

    Text Solution

    |

  16. The value of k in N for which the integral In=int0^1(1 – x^k)^n dx, n ...

    Text Solution

    |

  17. Let z be a complex number such that |z + 2| = 1 and Im(frac{z + 1}{z +...

    Text Solution

    |

  18. Let vec a = 9 hat i – 13 hat j + 25 hat k, vec b = 3 hat i + 7 hat j –...

    Text Solution

    |

  19. Let the area of the region enclosed by the curve y = min {sin x, cos x...

    Text Solution

    |

  20. Let the positive integers be written in the form If the kth row c...

    Text Solution

    |