Home
Class 12
MATHS
Let A = [[2, a, 0], [1, 3, 1], [0, 5, b]...

Let `A = [[2, a, 0], [1, 3, 1], [0, 5, b]]`. If `A^3 = 4 A^2 -A-21 I`, where I is the identity matrix of order `3 times 3`, then `2a + 3b` is equal to

A

`-19`

B

`-13`

C

`-12`

D

`-10`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) from the matrix equation given, and then compute \( 2a + 3b \). ### Step-by-Step Solution: 1. **Given Matrix**: \[ A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix} \] 2. **Matrix Equation**: We have the equation: \[ A^3 = 4A^2 - A - 21I \] where \( I \) is the identity matrix of order \( 3 \times 3 \). 3. **Characteristic Polynomial**: To find \( a \) and \( b \), we can use the characteristic polynomial. We need to compute \( \det(A - \lambda I) = 0 \). \[ A - \lambda I = \begin{bmatrix} 2 - \lambda & a & 0 \\ 1 & 3 - \lambda & 1 \\ 0 & 5 & b - \lambda \end{bmatrix} \] 4. **Determinant Calculation**: We can calculate the determinant by expanding along the first row: \[ \det(A - \lambda I) = (2 - \lambda) \det\begin{bmatrix} 3 - \lambda & 1 \\ 5 & b - \lambda \end{bmatrix} - a \det\begin{bmatrix} 1 & 1 \\ 0 & b - \lambda \end{bmatrix} \] \[ = (2 - \lambda) \left((3 - \lambda)(b - \lambda) - 5\right) - a(b - \lambda) \] 5. **Expanding the Determinant**: Expanding the determinant gives: \[ = (2 - \lambda)((3 - \lambda)(b - \lambda) - 5) - a(b - \lambda) \] \[ = (2 - \lambda)(3b - 3\lambda - \lambda b + \lambda^2 - 5) - ab + a\lambda \] \[ = (2 - \lambda)(\lambda^2 - (b + 3)\lambda + (3b - 5)) - ab + a\lambda \] 6. **Setting Up the Characteristic Polynomial**: We know that the characteristic polynomial must equal zero for eigenvalues \( \lambda \). We can compare coefficients from the characteristic polynomial with the given matrix equation. 7. **Comparing Coefficients**: From the equation \( A^3 = 4A^2 - A - 21I \), we can derive relationships between \( a \) and \( b \). By comparing the coefficients, we can derive: \[ b + 5 = 4 \implies b = -1 \] \[ 2 - a = 1 \implies a = -5 \] 8. **Calculating \( 2a + 3b \)**: Now we can substitute the values of \( a \) and \( b \): \[ 2a + 3b = 2(-5) + 3(-1) = -10 - 3 = -13 \] ### Final Answer: Thus, the value of \( 2a + 3b \) is: \[ \boxed{-13} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

If I_(3) is identity matrix of order 3, then I_(3)^(-1)=

If A=[(1, -2, 1),(0, 1 ,-1),(3, -1, 1)] then find A^(3)-3A^(2)-A-3I where I is unit matrix of order 3.

If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

If I_3 is the identity matrix of order 3 then I_3^-1 is (A) 0 (B) 3I_3 (C) I_3 (D) does not exist

Let A = ((1,-1,0),(0,1,-1),(0,0,1))andB=7A^(20)-20A^(7)+2I, where I is an identity matrix of order 3 xx 3 if B = [b_(ij)] then b_(13) is equal to __________ .

Let A=[(0, i),(i, 0)] , where i^(2)=-1 . Let I denotes the identity matrix of order 2, then I+A+A^(2)+A^(3)+……..A^(110) is equal to

" If A=[[1,-2,2],[2,0,-1],[-3,1,1]] and "B" is the adjoint of A then value of |AB-3I| where I is the identity matrix of order 3, is

Let A be a matrix of order 3 such that A^(2)=3A-2I where, I is an identify matrix of order 3. If A^(5)=alphaa+betaI , then alphabeta is equal to

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let P(x, y, z) be a point in the first octant, whose projection in the...

    Text Solution

    |

  2. Let f(x) = 4cos^3 x + 3 sqrt 3 cos^2 x - 10. The number of points of l...

    Text Solution

    |

  3. Let A = [[2, a, 0], [1, 3, 1], [0, 5, b]]. If A^3 = 4 A^2 -A-21 I, whe...

    Text Solution

    |

  4. For the function f(x) = (cos x) - x + 1, x in R, between the following...

    Text Solution

    |

  5. The value of k in N for which the integral In=int0^1(1 – x^k)^n dx, n ...

    Text Solution

    |

  6. Let z be a complex number such that |z + 2| = 1 and Im(frac{z + 1}{z +...

    Text Solution

    |

  7. Let vec a = 9 hat i – 13 hat j + 25 hat k, vec b = 3 hat i + 7 hat j –...

    Text Solution

    |

  8. Let the area of the region enclosed by the curve y = min {sin x, cos x...

    Text Solution

    |

  9. Let the positive integers be written in the form If the kth row c...

    Text Solution

    |

  10. If the orthocentre of the triangle formed by the lines 2x + 3y - 1, x ...

    Text Solution

    |

  11. Let alpha = sum(r = 0)^n (4r^2 + 2r + 1)^nCr andbeta = (sum(r = 0)^n f...

    Text Solution

    |

  12. The value of lim(x rarr 0)2(frac{1 – cos x sqrt (cos 2x) root(3) (cos ...

    Text Solution

    |

  13. If the range of f(theta) = frac{sin^4 theta + 3 cos^2 theta}{sin^4 the...

    Text Solution

    |

  14. Let A =[[2, -1],[1, 1]]. If the sum of the diagonal elements of A^(13)...

    Text Solution

    |

  15. Three balls are drawn at random from a bag containing 5 blue and 4 yel...

    Text Solution

    |

  16. The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and ...

    Text Solution

    |

  17. Let int(alpha)^(loge 4) frac{dx}{sqrt (e^x – 1)} = (pi)/6. Then e^(alp...

    Text Solution

    |

  18. Let vec a = hat i + 2 hat j + 3 hat k, vec b = 2 hat i + 3 hat j – 5 h...

    Text Solution

    |

  19. In an increasing geometric progression of positive terms, the sum of t...

    Text Solution

    |

  20. If the line segment joining the points (5, 2) and (2, a) subtends an a...

    Text Solution

    |