Home
Class 12
MATHS
Let alpha = sum(r = 0)^n (4r^2 + 2r + 1)...

Let `alpha = sum_(r = 0)^n (4r^2 + 2r + 1)^nC_r` and`beta = (sum_(r = 0)^n frac{"^nC_r}{r+1})+1/(n+1)`. If `140 < frac{2 alpha}{beta} < 281`, then the value of `n` is _____________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions for \(\alpha\) and \(\beta\) and then find the value of \(n\) such that \(140 < \frac{2\alpha}{\beta} < 281\). ### Step 1: Evaluate \(\alpha\) \[ \alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1) \binom{n}{r} \] We can break this sum into three parts: \[ \alpha = \sum_{r=0}^{n} 4r^2 \binom{n}{r} + \sum_{r=0}^{n} 2r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r} \] Using known formulas: 1. \(\sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1}\) 2. \(\sum_{r=0}^{n} r^2 \binom{n}{r} = n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1}\) 3. \(\sum_{r=0}^{n} \binom{n}{r} = 2^n\) Now substituting these into our expression for \(\alpha\): \[ \sum_{r=0}^{n} 4r^2 \binom{n}{r} = 4\left(n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1}\right) \] \[ \sum_{r=0}^{n} 2r \binom{n}{r} = 2(n \cdot 2^{n-1}) \] \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] Combining these results: \[ \alpha = 4\left(n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1}\right) + 2(n \cdot 2^{n-1}) + 2^n \] \[ = 4n(n-1) \cdot 2^{n-2} + 4n \cdot 2^{n-1} + 2n \cdot 2^{n-1} + 2^n \] \[ = 4n(n-1) \cdot 2^{n-2} + 6n \cdot 2^{n-1} + 2^n \] ### Step 2: Evaluate \(\beta\) \[ \beta = \left(\sum_{r=0}^{n} \frac{\binom{n}{r}}{r+1}\right) + \frac{1}{n+1} \] Using the known result: \[ \sum_{r=0}^{n} \frac{\binom{n}{r}}{r+1} = \frac{1}{n+1} \cdot 2^{n+1} \] Thus, \[ \beta = \frac{1}{n+1} \cdot 2^{n+1} + \frac{1}{n+1} \] \[ = \frac{2^{n+1} + 1}{n+1} \] ### Step 3: Calculate \(\frac{2\alpha}{\beta}\) Now we can compute \(\frac{2\alpha}{\beta}\): \[ \frac{2\alpha}{\beta} = \frac{2 \left(4n(n-1) \cdot 2^{n-2} + 6n \cdot 2^{n-1} + 2^n\right)}{\frac{2^{n+1} + 1}{n+1}} \] This simplifies to: \[ = \frac{2(n+1) \left(4n(n-1) \cdot 2^{n-2} + 6n \cdot 2^{n-1} + 2^n\right)}{2^{n+1} + 1} \] ### Step 4: Solve the inequality We need to solve: \[ 140 < \frac{2\alpha}{\beta} < 281 \] This involves substituting values for \(n\) and checking the inequalities. ### Step 5: Finding \(n\) After calculating for \(n = 5\) and \(n = 6\): 1. For \(n = 5\): - Calculate \(\frac{2\alpha}{\beta}\) and check if it lies within the bounds. 2. For \(n = 6\): - Repeat the calculation and check. After evaluating, we find that the value of \(n\) that satisfies the inequality is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Find sum_(r=0)^n(r+1)*"^nC_rx^r

Evaluate sum_(r = 0)^(n) 3^r ""^nC_r

Evaluate sum_(r = 1)^(n) ""^nC_r 2^r

Let a, b, c be the sides of Delta ABC opposite to angles A, b,C respecitvely. Let alpha = sum_(r=0)^(n) ""^(n)C_(r) b^(n-r) c^(r) cos{rB - (n-r)C} and beta = sum_(r=0)^(n) ""^(n)C_(r) b^(n-r) c^(r) sin{rB - (n-r)C} Statement -1: alpha = alpha^(n) Statement-2: beta = alpha^(n)

Evaluate sum_(r=0)^n(r+1)^2*"^nC_r

Prove that sum_(r=0)^(n)nC_(r)3^(r)=4^(n)

prove that sum_(r=0)^(n)3^(r)nC_(r)=4^(n)

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let the positive integers be written in the form If the kth row c...

    Text Solution

    |

  2. If the orthocentre of the triangle formed by the lines 2x + 3y - 1, x ...

    Text Solution

    |

  3. Let alpha = sum(r = 0)^n (4r^2 + 2r + 1)^nCr andbeta = (sum(r = 0)^n f...

    Text Solution

    |

  4. The value of lim(x rarr 0)2(frac{1 – cos x sqrt (cos 2x) root(3) (cos ...

    Text Solution

    |

  5. If the range of f(theta) = frac{sin^4 theta + 3 cos^2 theta}{sin^4 the...

    Text Solution

    |

  6. Let A =[[2, -1],[1, 1]]. If the sum of the diagonal elements of A^(13)...

    Text Solution

    |

  7. Three balls are drawn at random from a bag containing 5 blue and 4 yel...

    Text Solution

    |

  8. The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and ...

    Text Solution

    |

  9. Let int(alpha)^(loge 4) frac{dx}{sqrt (e^x – 1)} = (pi)/6. Then e^(alp...

    Text Solution

    |

  10. Let vec a = hat i + 2 hat j + 3 hat k, vec b = 2 hat i + 3 hat j – 5 h...

    Text Solution

    |

  11. In an increasing geometric progression of positive terms, the sum of t...

    Text Solution

    |

  12. If the line segment joining the points (5, 2) and (2, a) subtends an a...

    Text Solution

    |

  13. The area of the region in the first quadrant inside the circle x^2 + y...

    Text Solution

    |

  14. Let A = {2, 3, 6, 8, 9, 11} and B = {1, 4, 5, 10, 15}. Let be a relati...

    Text Solution

    |

  15. For a, b > 0, let f(x) = {(frac{tan((a + 1)x) + b tan x}{x}, x < 0), (...

    Text Solution

    |

  16. If the system of equations x + 4y - z = lambda, 7x + 9y + mu z = -3, 5...

    Text Solution

    |

  17. The sum of all possible values of theta in [-pi, 2 pi], for which frac...

    Text Solution

    |

  18. Let f(x) = {(-a, if, -a le x le 0), (x + a, if, x < x le a):}where a >...

    Text Solution

    |

  19. Let y = y(x) be the solution curve of the differential equation sec y(...

    Text Solution

    |

  20. There are three bags X, Y and Z. Bag X contains 5 one-rupee coins and ...

    Text Solution

    |