Home
Class 12
MATHS
Let A =[[2, -1],[1, 1]]. If the sum of t...

Let `A =[[2, -1],[1, 1]]`. If the sum of the diagonal elements of `A^(13)` is `3^n`, then `n` is equal to ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that the sum of the diagonal elements (trace) of the matrix \( A^{13} \) is equal to \( 3^n \). The matrix \( A \) is given as: \[ A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \] ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot 2 + (-1) \cdot 1 = 4 - 1 = 3 \) - First row, second column: \( 2 \cdot (-1) + (-1) \cdot 1 = -2 - 1 = -3 \) - Second row, first column: \( 1 \cdot 2 + 1 \cdot 1 = 2 + 1 = 3 \) - Second row, second column: \( 1 \cdot (-1) + 1 \cdot 1 = -1 + 1 = 0 \) Thus, we have: \[ A^2 = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix} \] ### Step 2: Calculate \( A^4 \) Next, we calculate \( A^4 \) by squaring \( A^2 \): \[ A^4 = A^2 \cdot A^2 = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix} \] Calculating the elements: - First row, first column: \( 3 \cdot 3 + (-3) \cdot 3 = 9 - 9 = 0 \) - First row, second column: \( 3 \cdot (-3) + (-3) \cdot 0 = -9 + 0 = -9 \) - Second row, first column: \( 3 \cdot 3 + 0 \cdot 3 = 9 + 0 = 9 \) - Second row, second column: \( 3 \cdot (-3) + 0 \cdot 0 = -9 + 0 = -9 \) Thus, we have: \[ A^4 = \begin{bmatrix} 0 & -9 \\ 9 & -9 \end{bmatrix} \] ### Step 3: Calculate \( A^8 \) Next, we calculate \( A^8 \): \[ A^8 = A^4 \cdot A^4 = \begin{bmatrix} 0 & -9 \\ 9 & -9 \end{bmatrix} \cdot \begin{bmatrix} 0 & -9 \\ 9 & -9 \end{bmatrix} \] Calculating the elements: - First row, first column: \( 0 \cdot 0 + (-9) \cdot 9 = 0 - 81 = -81 \) - First row, second column: \( 0 \cdot (-9) + (-9) \cdot (-9) = 0 + 81 = 81 \) - Second row, first column: \( 9 \cdot 0 + (-9) \cdot 9 = 0 - 81 = -81 \) - Second row, second column: \( 9 \cdot (-9) + (-9) \cdot (-9) = -81 + 81 = 0 \) Thus, we have: \[ A^8 = \begin{bmatrix} -81 & 81 \\ -81 & 0 \end{bmatrix} \] ### Step 4: Calculate \( A^{12} \) Next, we calculate \( A^{12} \): \[ A^{12} = A^8 \cdot A^4 = \begin{bmatrix} -81 & 81 \\ -81 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -9 \\ 9 & -9 \end{bmatrix} \] Calculating the elements: - First row, first column: \( -81 \cdot 0 + 81 \cdot 9 = 0 + 729 = 729 \) - First row, second column: \( -81 \cdot (-9) + 81 \cdot (-9) = 729 - 729 = 0 \) - Second row, first column: \( -81 \cdot 0 + 0 \cdot 9 = 0 + 0 = 0 \) - Second row, second column: \( -81 \cdot (-9) + 0 \cdot (-9) = 729 + 0 = 729 \) Thus, we have: \[ A^{12} = \begin{bmatrix} 729 & 0 \\ 0 & 729 \end{bmatrix} = 729 I \] ### Step 5: Calculate \( A^{13} \) Now, we calculate \( A^{13} \): \[ A^{13} = A^{12} \cdot A = 729 I \cdot A = 729 \cdot \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \] Thus, we have: \[ A^{13} = \begin{bmatrix} 1458 & -729 \\ 729 & 729 \end{bmatrix} \] ### Step 6: Calculate the Trace of \( A^{13} \) The trace of a matrix is the sum of its diagonal elements: \[ \text{Trace}(A^{13}) = 1458 + 729 = 2187 \] ### Step 7: Express Trace in Terms of \( 3^n \) Now, we express \( 2187 \) as a power of \( 3 \): \[ 2187 = 3^7 \] ### Conclusion Thus, we find that \( n = 7 \). Therefore, the answer is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let A = { n in N | n^(2) le n + 10,000 } B = { 3k + 1 | k in N } and C = { 2 k |k in K } , then the sum of all the elements of the set A cap (B - C) is equal to ______

sum_(n=1)^(99) n! (n^2 + n+1) is equal to :

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

sum_(n=1)^7(n(n+1)(2n+1))/4 is equal to

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to ___.

The sum of all the elements in the set {n in {(1, 2, ……., 100} | H.C.F. " of n and 2040 is 1"} is equal to _________ .

Let a_1, a_2, …, a_21 be an AP such that sum_(n=1)^20 1/(a_n a_(n+1)) = 4/9 . if the sum of this AP is 189, then a_6a_16 is equal to :

Let a_1, a_2, …, a_21 be an AP such that sum_(n=1)^20 1/(a_n a_(n+1)) = 4/9 . if the sum of this AP is 189, then a_6a_16 is equal to :

The value of sum Sigma_(n=1)^(13) (i^n + i^(n+1)) where i= sqrt(-1) equals

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. The value of lim(x rarr 0)2(frac{1 – cos x sqrt (cos 2x) root(3) (cos ...

    Text Solution

    |

  2. If the range of f(theta) = frac{sin^4 theta + 3 cos^2 theta}{sin^4 the...

    Text Solution

    |

  3. Let A =[[2, -1],[1, 1]]. If the sum of the diagonal elements of A^(13)...

    Text Solution

    |

  4. Three balls are drawn at random from a bag containing 5 blue and 4 yel...

    Text Solution

    |

  5. The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and ...

    Text Solution

    |

  6. Let int(alpha)^(loge 4) frac{dx}{sqrt (e^x – 1)} = (pi)/6. Then e^(alp...

    Text Solution

    |

  7. Let vec a = hat i + 2 hat j + 3 hat k, vec b = 2 hat i + 3 hat j – 5 h...

    Text Solution

    |

  8. In an increasing geometric progression of positive terms, the sum of t...

    Text Solution

    |

  9. If the line segment joining the points (5, 2) and (2, a) subtends an a...

    Text Solution

    |

  10. The area of the region in the first quadrant inside the circle x^2 + y...

    Text Solution

    |

  11. Let A = {2, 3, 6, 8, 9, 11} and B = {1, 4, 5, 10, 15}. Let be a relati...

    Text Solution

    |

  12. For a, b > 0, let f(x) = {(frac{tan((a + 1)x) + b tan x}{x}, x < 0), (...

    Text Solution

    |

  13. If the system of equations x + 4y - z = lambda, 7x + 9y + mu z = -3, 5...

    Text Solution

    |

  14. The sum of all possible values of theta in [-pi, 2 pi], for which frac...

    Text Solution

    |

  15. Let f(x) = {(-a, if, -a le x le 0), (x + a, if, x < x le a):}where a >...

    Text Solution

    |

  16. Let y = y(x) be the solution curve of the differential equation sec y(...

    Text Solution

    |

  17. There are three bags X, Y and Z. Bag X contains 5 one-rupee coins and ...

    Text Solution

    |

  18. If the shortest distance between the lines frac{x – lambda}{2} = frac{...

    Text Solution

    |

  19. The number of ways five alphabets can be chosen from the alphabets of ...

    Text Solution

    |

  20. Let vec a = 4 hat i – hat j + hat k, vec b = 11 hat i – hat j + hat k ...

    Text Solution

    |