Home
Class 12
MATHS
Let int frac{2 – tan x}{3 + tan x} dx = ...

Let `int frac{2 – tan x}{3 + tan x} dx = 1/2 (alpha x + log_e |beta sin x + gamma cos x|) + C`,
where `C` is the constant of integration. Then `alpha + (gamma)/(beta)` is equal to is equal to

A

1

B

4

C

3

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral problem step by step, we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{2 - \tan x}{3 + \tan x} \, dx \] We can express \(\tan x\) in terms of \(\sin x\) and \(\cos x\): \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we rewrite the integral as: \[ \int \frac{2 - \frac{\sin x}{\cos x}}{3 + \frac{\sin x}{\cos x}} \, dx = \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx \] ### Step 2: Use Partial Fraction Decomposition We can express the numerator \(2 \cos x - \sin x\) as a linear combination of the derivative of the denominator: \[ 2 \cos x - \sin x = a(3 \cos x + \sin x) + b(3 \cos x + \sin x) \] We need to find constants \(a\) and \(b\) such that: \[ 2 \cos x - \sin x = a(3 \cos x - \sin x) + b(3 \cos x + \sin x) \] ### Step 3: Set Up the System of Equations By comparing coefficients of \(\cos x\) and \(\sin x\), we get: 1. For \(\cos x\): \(2 = 3a + 3b\) 2. For \(\sin x\): \(-1 = -a + b\) ### Step 4: Solve the System of Equations From the second equation, we can express \(b\) in terms of \(a\): \[ b = a - 1 \] Substituting \(b\) into the first equation: \[ 2 = 3a + 3(a - 1) \implies 2 = 6a - 3 \implies 6a = 5 \implies a = \frac{5}{6} \] Now substituting \(a\) back to find \(b\): \[ b = \frac{5}{6} - 1 = -\frac{1}{6} \] ### Step 5: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( \frac{5/6}{3 + \tan x} - \frac{1/6}{3 + \tan x} \right) \, dx \] This can be separated into two integrals: \[ \frac{5}{6} \int \frac{1}{3 + \tan x} \, dx - \frac{1}{6} \int \frac{1}{3 + \tan x} \, dx \] ### Step 6: Integrate The integral of \(\frac{1}{3 + \tan x}\) can be solved using the substitution \(u = 3 + \tan x\): \[ du = \sec^2 x \, dx \] Thus, the integral becomes: \[ \int \frac{1}{u} \, du = \log |u| + C = \log |3 + \tan x| + C \] ### Step 7: Combine Results Combining the results, we have: \[ \int \frac{2 - \tan x}{3 + \tan x} \, dx = \frac{1}{2} \left( \alpha x + \log |3 \cos x + \sin x| \right) + C \] where \(\alpha = 1\), \(\beta = 1\), and \(\gamma = 3\). ### Step 8: Calculate \(\alpha + \frac{\gamma}{\beta}\) Now we need to compute: \[ \alpha + \frac{\gamma}{\beta} = 1 + \frac{3}{1} = 1 + 3 = 4 \] ### Final Answer Thus, the value of \(\alpha + \frac{\gamma}{\beta}\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Let alpha in (0, pi//2) be fixed. If the integral int("tan x" + "tan" alpha)/("tan x" - "tan" alpha)dx = A(x)"cos 2 alpha+B(x) "sin" 2 alpha +C ,where C is a constant of integration, then the functions A(x) and B(x) are respectively.

If int(sin x)/(sin^(3)x + cos^(3)x) dx = alpha log_(e)|1 + tan x| + beta log_(e)|1-tan x + tan^(2)x| + gamma tan^(-1)((2 tan x - 1)/(sqrt(3))) + C , when C is constant of integration, then the value of 18(alpha+ beta + gamma^(2)) is __________.

42.If int(sin2x+2tan x)/((cos^(6)x+6cos^(2)x+4))dx=(1)/(alpha)ln| beta+(delta)/(cos^(gamma)x)+(gamma)/(cos^(delta)x)|+c where c is constant of Integration and alpha; beta ;gamma ;delta in N and gamma delta then then which of the following is

If int_(-pi/2)^(pi/2) frac {8 sqrt 2 cos x dx}{(1 e^(sin x)) (1 sin^4 x)} = alpha pi beta log_e(3 2 sqrt 2) , where alpha , beta are integers, then alpha^2 beta^2 equals ___________.

If I= int_(-a)^(a)(alpha sin^(5)x+beta tan^(3)x+gamma cos x)dx , where alpha,beta,gamma are constants, then the value of I depends on

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. Let alpha, beta be the roots of the equation x^2 +2 sqrt 2x-1 = 0. The...

    Text Solution

    |

  2. The parabola y^2 = 4x divides the area of the circle x^2 + y^2 = 5 in ...

    Text Solution

    |

  3. Let int frac{2 – tan x}{3 + tan x} dx = 1/2 (alpha x + loge |beta sin ...

    Text Solution

    |

  4. The shortest distance between the lines frac{x – 3}{4} = frac{y + 7}{-...

    Text Solution

    |

  5. If the sum of the series frac{1}{1. (1 + d)} + frac{1}{(1 + d) (1 + 2d...

    Text Solution

    |

  6. A ray of light coming from the point P(1, 2) gets reflected from the p...

    Text Solution

    |

  7. Let the line L intersect the lines x - 2 = - y = z - 1, 2(x + 1) = 2(y...

    Text Solution

    |

  8. The coefficient of x^(70) in x^2 (1 + x)^(98) + x^3 (1 + x)^(97) +x^4 ...

    Text Solution

    |

  9. Let lambda, mu in R. If the system of equations 3x + 5y + lambda z =...

    Text Solution

    |

  10. The frequency distribution of the age of students a class of 40 studen...

    Text Solution

    |

  11. A variable line L passes through the point (3, 5) and intersects the p...

    Text Solution

    |

  12. The solution curve, of the differential equation 2y (dy)/(dx) + 3 = 5(...

    Text Solution

    |

  13. Let f(x) = x^2+9, g(x) = x/(x – 9) and a = fog( 10), b = gof(3). If e ...

    Text Solution

    |

  14. Let a circle passing through (2, 0) have its centre at the point (h, k...

    Text Solution

    |

  15. If the domain of the function f(x) = sin^(-1)(frac{x-1}{2x + 3}) is R ...

    Text Solution

    |

  16. Let three vectors vec a = alpha hat i + 4 hat j + 2 hat k , vec b = 5 ...

    Text Solution

    |

  17. Let vec (OA) = 2 vec a, vec (OB) = 6 vec a + 5 vec b and vec (OC) = 3 ...

    Text Solution

    |

  18. Let f(x) = ax^3 + bx^2 + cx + 41 be such that f(1) = 40, f'(1) = 2 and...

    Text Solution

    |

  19. The solution of the differential equation (x^2 + y^2)dx - 5xy dy = 0, ...

    Text Solution

    |

  20. Let |cos theta cos(60 - theta) cos(60 + theta)| le 1/8, theta in [0, 2...

    Text Solution

    |