Home
Class 12
MATHS
The shortest distance between the lines ...

The shortest distance between the lines `frac{x – 3}{4} = frac{y + 7}{-11} = frac{z – 1}{5}` and `frac{x – 5}{3} = frac{y – 9}{-6} = frac{z + 2}{1}` is:

A

`frac{179}{sqrt 563}`

B

`frac{178}{sqrt 563}`

C

`frac{187}{sqrt 563}`

D

`frac{185}{sqrt 563}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we can follow these steps: ### Step 1: Write the equations of the lines in vector form The first line is given as: \[ \frac{x - 3}{4} = \frac{y + 7}{-11} = \frac{z - 1}{5} \] This can be written in vector form as: \[ \mathbf{r_1} = \begin{pmatrix} 3 \\ -7 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -11 \\ 5 \end{pmatrix} \] where \(\mathbf{a_1} = \begin{pmatrix} 3 \\ -7 \\ 1 \end{pmatrix}\) and \(\mathbf{b_1} = \begin{pmatrix} 4 \\ -11 \\ 5 \end{pmatrix}\). The second line is given as: \[ \frac{x - 5}{3} = \frac{y - 9}{-6} = \frac{z + 2}{1} \] This can be written in vector form as: \[ \mathbf{r_2} = \begin{pmatrix} 5 \\ 9 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -6 \\ 1 \end{pmatrix} \] where \(\mathbf{a_2} = \begin{pmatrix} 5 \\ 9 \\ -2 \end{pmatrix}\) and \(\mathbf{b_2} = \begin{pmatrix} 3 \\ -6 \\ 1 \end{pmatrix}\). ### Step 2: Find the vector connecting points on the lines Now we find the vector \(\mathbf{a_2} - \mathbf{a_1}\): \[ \mathbf{a_2} - \mathbf{a_1} = \begin{pmatrix} 5 \\ 9 \\ -2 \end{pmatrix} - \begin{pmatrix} 3 \\ -7 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 16 \\ -3 \end{pmatrix} \] ### Step 3: Calculate the cross product of direction vectors Next, we calculate the cross product \(\mathbf{b_1} \times \mathbf{b_2}\): \[ \mathbf{b_1} = \begin{pmatrix} 4 \\ -11 \\ 5 \end{pmatrix}, \quad \mathbf{b_2} = \begin{pmatrix} 3 \\ -6 \\ 1 \end{pmatrix} \] Using the determinant formula for the cross product: \[ \mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & -11 & 5 \\ 3 & -6 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \left((-11)(1) - (5)(-6)\right) - \mathbf{j} \left((4)(1) - (5)(3)\right) + \mathbf{k} \left((4)(-6) - (-11)(3)\right) \] \[ = \mathbf{i} (-11 + 30) - \mathbf{j} (4 - 15) + \mathbf{k} (-24 + 33) \] \[ = \mathbf{i} (19) + \mathbf{j} (11) + \mathbf{k} (9) = \begin{pmatrix} 19 \\ 11 \\ 9 \end{pmatrix} \] ### Step 4: Calculate the shortest distance The formula for the shortest distance \(d\) between the two lines is given by: \[ d = \frac{|(\mathbf{a_2} - \mathbf{a_1}) \cdot (\mathbf{b_1} \times \mathbf{b_2})|}{|\mathbf{b_1} \times \mathbf{b_2}|} \] First, we calculate the dot product: \[ (\mathbf{a_2} - \mathbf{a_1}) \cdot (\mathbf{b_1} \times \mathbf{b_2}) = \begin{pmatrix} 2 \\ 16 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} 19 \\ 11 \\ 9 \end{pmatrix} \] \[ = 2 \cdot 19 + 16 \cdot 11 + (-3) \cdot 9 = 38 + 176 - 27 = 187 \] Next, we calculate the magnitude of \(\mathbf{b_1} \times \mathbf{b_2}\): \[ |\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{19^2 + 11^2 + 9^2} = \sqrt{361 + 121 + 81} = \sqrt{563} \] Finally, substituting these values into the distance formula: \[ d = \frac{|187|}{\sqrt{563}} = \frac{187}{\sqrt{563}} \] ### Final Answer Thus, the shortest distance between the two lines is: \[ \frac{187}{\sqrt{563}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

If the shortest distance between the lines frac{x - lambda} {-2} = frac{y - 2} {1} = frac{z - 1} {1} and frac{x - sqrt 3}{1} = frac{y-1}{-2} = frac{z-2}{1} is 1, then the sum of all possible values of lambda is :

Let O be the origin, and M and N be the points on the lines frac{x-5}{4} = frac{y-4}{1}=frac{z-5}{3} and frac{x+8}{12} = frac{y-2}{5}=frac{z+11}{9} respectively such that MN is the shortest distance between the given lines. Then vec (OM). vec (ON) is equal to _____.

Add the following: 3frac{1}{13} + 1frac{4}{13} + 2frac{3}{13}

2.Simplify 1frac{3}{4}xx2frac{2}{5}xx3frac{4}{7}

2.Simplify 1frac{3}{4}xx2frac{2}{5}xx3frac{4}{7}

Find the value of : (2frac{2}{3}).(2frac{1}{5})

The rational number between frac(1)(2) and frac(3)(5) is

Let (alpha, beta, gamma) be the foot of perpendicular from the point (1, 2, 3,) on the line frac{x 3}{5} = frac{y - 1}{2} = frac{z 4}{3} then 19 (alpha beta gamma)

Prove that yz^(log frac{y}{z}) *(zx)^(log frac{z}{x})* (xy)^(log frac{x}{y}) =1

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. The parabola y^2 = 4x divides the area of the circle x^2 + y^2 = 5 in ...

    Text Solution

    |

  2. Let int frac{2 – tan x}{3 + tan x} dx = 1/2 (alpha x + loge |beta sin ...

    Text Solution

    |

  3. The shortest distance between the lines frac{x – 3}{4} = frac{y + 7}{-...

    Text Solution

    |

  4. If the sum of the series frac{1}{1. (1 + d)} + frac{1}{(1 + d) (1 + 2d...

    Text Solution

    |

  5. A ray of light coming from the point P(1, 2) gets reflected from the p...

    Text Solution

    |

  6. Let the line L intersect the lines x - 2 = - y = z - 1, 2(x + 1) = 2(y...

    Text Solution

    |

  7. The coefficient of x^(70) in x^2 (1 + x)^(98) + x^3 (1 + x)^(97) +x^4 ...

    Text Solution

    |

  8. Let lambda, mu in R. If the system of equations 3x + 5y + lambda z =...

    Text Solution

    |

  9. The frequency distribution of the age of students a class of 40 studen...

    Text Solution

    |

  10. A variable line L passes through the point (3, 5) and intersects the p...

    Text Solution

    |

  11. The solution curve, of the differential equation 2y (dy)/(dx) + 3 = 5(...

    Text Solution

    |

  12. Let f(x) = x^2+9, g(x) = x/(x – 9) and a = fog( 10), b = gof(3). If e ...

    Text Solution

    |

  13. Let a circle passing through (2, 0) have its centre at the point (h, k...

    Text Solution

    |

  14. If the domain of the function f(x) = sin^(-1)(frac{x-1}{2x + 3}) is R ...

    Text Solution

    |

  15. Let three vectors vec a = alpha hat i + 4 hat j + 2 hat k , vec b = 5 ...

    Text Solution

    |

  16. Let vec (OA) = 2 vec a, vec (OB) = 6 vec a + 5 vec b and vec (OC) = 3 ...

    Text Solution

    |

  17. Let f(x) = ax^3 + bx^2 + cx + 41 be such that f(1) = 40, f'(1) = 2 and...

    Text Solution

    |

  18. The solution of the differential equation (x^2 + y^2)dx - 5xy dy = 0, ...

    Text Solution

    |

  19. Let |cos theta cos(60 - theta) cos(60 + theta)| le 1/8, theta in [0, 2...

    Text Solution

    |

  20. If a function f satisfies f(m + n) = f(m) + f(n) for all m, n in N and...

    Text Solution

    |