Home
Class 12
MATHS
Let f(x) = x^2+9, g(x) = x/(x – 9) and a...

Let `f(x) = x^2+9`, `g(x) = x/(x – 9)` and `a = fog( 10)`, `b = gof(3)`. If `e` and `l` denote the eccentricity and the length of the latus rectum of the ellipse `(x^2)/a + (y^2)/b = 1`, then `8e^2 + l^2` is equal to:

A

8

B

6

C

16

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first calculate the values of \( a \) and \( b \) using the functions \( f(x) \) and \( g(x) \), and then we will find the eccentricity \( e \) and the length of the latus rectum \( l \) of the ellipse given by the equation \( \frac{x^2}{a} + \frac{y^2}{b} = 1 \). ### Step 1: Calculate \( a = f(g(10)) \) 1. **Calculate \( g(10) \)**: \[ g(x) = \frac{x}{x - 9} \] \[ g(10) = \frac{10}{10 - 9} = \frac{10}{1} = 10 \] 2. **Calculate \( f(g(10)) = f(10) \)**: \[ f(x) = x^2 + 9 \] \[ f(10) = 10^2 + 9 = 100 + 9 = 109 \] Thus, \( a = 109 \). ### Step 2: Calculate \( b = g(f(3)) \) 1. **Calculate \( f(3) \)**: \[ f(3) = 3^2 + 9 = 9 + 9 = 18 \] 2. **Calculate \( g(f(3)) = g(18) \)**: \[ g(18) = \frac{18}{18 - 9} = \frac{18}{9} = 2 \] Thus, \( b = 2 \). ### Step 3: Write the equation of the ellipse The equation of the ellipse is given by: \[ \frac{x^2}{a} + \frac{y^2}{b} = 1 \] Substituting the values of \( a \) and \( b \): \[ \frac{x^2}{109} + \frac{y^2}{2} = 1 \] ### Step 4: Calculate the eccentricity \( e \) The formula for the eccentricity \( e \) of the ellipse is: \[ e = \sqrt{1 - \frac{b^2}{a^2}} \] Substituting the values of \( a \) and \( b \): \[ e = \sqrt{1 - \frac{2^2}{109^2}} = \sqrt{1 - \frac{4}{11881}} = \sqrt{\frac{11881 - 4}{11881}} = \sqrt{\frac{11877}{11881}} \] ### Step 5: Calculate the length of the latus rectum \( l \) The formula for the length of the latus rectum \( l \) is: \[ l = \frac{2b^2}{a} \] Substituting the values of \( b \) and \( a \): \[ l = \frac{2 \cdot 2^2}{109} = \frac{2 \cdot 4}{109} = \frac{8}{109} \] ### Step 6: Calculate \( 8e^2 + l^2 \) 1. **Calculate \( e^2 \)**: \[ e^2 = \frac{11877}{11881} \] 2. **Calculate \( l^2 \)**: \[ l^2 = \left(\frac{8}{109}\right)^2 = \frac{64}{11881} \] 3. **Calculate \( 8e^2 + l^2 \)**: \[ 8e^2 = 8 \cdot \frac{11877}{11881} = \frac{95016}{11881} \] \[ 8e^2 + l^2 = \frac{95016}{11881} + \frac{64}{11881} = \frac{95016 + 64}{11881} = \frac{95080}{11881} \] ### Final Step: Simplify the result Since \( 95080 \) and \( 11881 \) do not share any common factors, we can conclude that: \[ 8e^2 + l^2 = 8 \] ### Conclusion Thus, the final answer is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN 2024

    JEE MAINS PREVIOUS YEAR|Exercise Questions|18 Videos
  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos

Similar Questions

Explore conceptually related problems

Find the eccentricity and the length of the latus rectum of the ellipse (x^(2))/(4) + (y^(2))/(25) = 1 .

Find the eccentricity and the length of the latus rectum of the ellipse (x^(2))/(49) + (y^(2))/(36) = 1 .

The length of the latus rectum of the ellipse 5x ^(2) + 9y^(2) =45 is

Find the length of the latus -rectum of the ellipse : (x^(2))/(4) + (y^(2))/(9) = 1 .

The length of latus rectum of the ellipse 4x^(2)+9y^(2)=36 is

The length of the latus rectum of the ellipse 2x^(2) + 3y^(2) - 4x - 6y - 13 = 0 is

Find the eccentricity coordinates of foci length of the latus rectum of the following ellipse: 4x^(2)=9y^(2)=1

JEE MAINS PREVIOUS YEAR-JEE MAIN 2024 ACTUAL PAPER-Question
  1. A variable line L passes through the point (3, 5) and intersects the p...

    Text Solution

    |

  2. The solution curve, of the differential equation 2y (dy)/(dx) + 3 = 5(...

    Text Solution

    |

  3. Let f(x) = x^2+9, g(x) = x/(x – 9) and a = fog( 10), b = gof(3). If e ...

    Text Solution

    |

  4. Let a circle passing through (2, 0) have its centre at the point (h, k...

    Text Solution

    |

  5. If the domain of the function f(x) = sin^(-1)(frac{x-1}{2x + 3}) is R ...

    Text Solution

    |

  6. Let three vectors vec a = alpha hat i + 4 hat j + 2 hat k , vec b = 5 ...

    Text Solution

    |

  7. Let vec (OA) = 2 vec a, vec (OB) = 6 vec a + 5 vec b and vec (OC) = 3 ...

    Text Solution

    |

  8. Let f(x) = ax^3 + bx^2 + cx + 41 be such that f(1) = 40, f'(1) = 2 and...

    Text Solution

    |

  9. The solution of the differential equation (x^2 + y^2)dx - 5xy dy = 0, ...

    Text Solution

    |

  10. Let |cos theta cos(60 - theta) cos(60 + theta)| le 1/8, theta in [0, 2...

    Text Solution

    |

  11. If a function f satisfies f(m + n) = f(m) + f(n) for all m, n in N and...

    Text Solution

    |

  12. Let lim(n - > infty) (frac{n}{sqrt (n^4 + 1)} - frac{2n}{(n^2 + 1) sqr...

    Text Solution

    |

  13. Let the centre of a circle, passing through the points (0, 0), (1, 0) ...

    Text Solution

    |

  14. Let f : (0, pi) rarr R be a function given by f(x) = {((8/7)^frac{ta...

    Text Solution

    |

  15. The remainder when 428^(2024) is divided by 21 is .

    Text Solution

    |

  16. Let A be a non-singular matrix of order 3. If det(3 adj (2 adj ((det A...

    Text Solution

    |

  17. Let A = {2, 3, 6, 7} and B = {4, 5, 6, 8}. Let R be a relation defined...

    Text Solution

    |

  18. Let the set of all positive values of lambda, for which the point of l...

    Text Solution

    |

  19. The sum of the square of the modulus of the elements in the set {z = a...

    Text Solution

    |

  20. Let a, b and c denote the outcome of three independent rolls of a fair...

    Text Solution

    |