Home
Class 11
MATHS
For any triangle ABC, prove that(b^2 c^2...

For any triangle ABC, prove that`(b^2 c^2) cotA + (c^2 a^2) cotB + (a^2 b^2) cotC = 0`

Text Solution

AI Generated Solution

To prove the identity \((b^2 c^2) \cot A + (c^2 a^2) \cot B + (a^2 b^2) \cot C = 0\) for any triangle ABC, we will follow these steps: ### Step 1: Use the Cotangent Definition Recall that \(\cot A = \frac{\cos A}{\sin A}\), \(\cot B = \frac{\cos B}{\sin B}\), and \(\cot C = \frac{\cos C}{\sin C}\). We can rewrite the left-hand side (LHS) of the equation using these definitions: \[ LHS = (b^2 c^2) \frac{\cos A}{\sin A} + (c^2 a^2) \frac{\cos B}{\sin B} + (a^2 b^2) \frac{\cos C}{\sin C} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise SOLVED EXAMPLES|33 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.1|7 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

In any DeltaABC , prove that (b^(2)-c^(2))cotA+(c^(2)+a^(2))cotB+(a^(2)-b^(2))cotC=0 .

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

In a triangle ABC, prove that (a^2+b^2-c^2)tan C-(b^2+c^2-a^2)tan A=0

For any triangle ABC, prove that (b+c)cos(B+C)/(2)=a cos(B-C)/(2)

In any /_ABC, prove that (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(c^(a)-b^(2))cot C=0

In any Delta ABC, prove that :(b^(2)-c^(2))cos2A+(c^(2)-a^(2))cos2B+(a^(2)-b^(2))cos2C=0

In any triangle ABC, prove that: Delta=(b^(2)+c^(2)-a^(2))/(4cot a)

In any triangle ABC, prove that: (b-c)cot(A)/(2)+(c-a)cot(B)/(2)+(a-b)cot(C)/(2)=0

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C