Home
Class 11
MATHS
For any triangle ABC, prove that(cosA)/a...

For any triangle ABC, prove that`(cosA)/a+(cosB)/b+(cosC)/c=(a^2+b^2+c^2)/(2a b c)`

Text Solution

Verified by Experts

By cosine law of triangles we have:
`c^2 = a^2 + b^2 − 2ab cos(C)`
`cos(C) = (c^2 - a^2 - b^2) / (-2ab) `
`=>cos(C) = (a^2 + b^2 - c^2)/2ab` ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise SOLVED EXAMPLES|33 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.1|7 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

For any triangle ABC, prove that (b+c)cos(B+C)/(2)=a cos(B-C)/(2)

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that: (1+cos(A-B)cos C)/(1+cos(A-C)cos B)=(a^(2)+b^(2))/(a^(2)+c^(2))

In triangle ABC , prove that a(cosC-cosB)=2(b-c)cos^2.(A)/(2) .

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

In any triangle ABC , prove that a(cosB+cot(A/2).sinB)=b+c .

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

For any triangle ABC ,prove that (a+b)/(c)=(cos((A-B)/(2)))/(sin(C)/(2))