Home
Class 11
MATHS
Compute lim(x rarr 0)(e^(3x)-sinx-1)/x...

Compute `lim_(x rarr 0)(e^(3x)-sinx-1)/x`

Text Solution

AI Generated Solution

The correct Answer is:
To compute the limit \[ \lim_{x \to 0} \frac{e^{3x} - \sin x - 1}{x}, \] we can break it down into manageable steps. ### Step 1: Rewrite the Limit We start by rewriting the limit expression: \[ \lim_{x \to 0} \frac{e^{3x} - 1 - \sin x}{x}. \] ### Step 2: Split the Limit We can split the limit into two parts: \[ \lim_{x \to 0} \left( \frac{e^{3x} - 1}{x} - \frac{\sin x}{x} \right). \] ### Step 3: Evaluate Each Limit Now we evaluate each limit separately. 1. **For the first limit**: We know that \[ \lim_{x \to 0} \frac{e^{3x} - 1}{3x} = 1. \] Therefore, \[ \lim_{x \to 0} \frac{e^{3x} - 1}{x} = 3 \cdot \lim_{x \to 0} \frac{e^{3x} - 1}{3x} = 3 \cdot 1 = 3. \] 2. **For the second limit**: We also know that \[ \lim_{x \to 0} \frac{\sin x}{x} = 1. \] ### Step 4: Combine the Results Now we combine the results from the two limits: \[ \lim_{x \to 0} \left( \frac{e^{3x} - 1}{x} - \frac{\sin x}{x} \right) = 3 - 1 = 2. \] ### Final Result Thus, the limit is \[ \lim_{x \to 0} \frac{e^{3x} - \sin x - 1}{x} = 2. \] ---

To compute the limit \[ \lim_{x \to 0} \frac{e^{3x} - \sin x - 1}{x}, \] we can break it down into manageable steps. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • LIMITS AND DERIVATIVES

    NCERT|Exercise EXERCISE 13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT|Exercise EXERCISE 13.3|8 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Compute lim_(x rarr0)(e^(3x)-1)/(x)

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)((e^(3+x)-sin x-e^(3)))/(x)

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x)=)

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

lim_(x rarr0)((e^(3x)-e^(2x))/(x))

lim_(x rarr0)(e^(3x)-1)/(log(1+5x))