Home
Class 11
MATHS
For any triangle ABC, prove that(a-b)/c=...

For any triangle ABC, prove that`(a-b)/c=(sin((A-B)/2))/(cosC/2)`

Text Solution

AI Generated Solution

To prove that \(\frac{a-b}{c} = \frac{\sin\left(\frac{A-B}{2}\right)}{\cos\left(\frac{C}{2}\right)}\) for any triangle \(ABC\), we will use the sine rule and some trigonometric identities. ### Step-by-Step Solution: 1. **Start with the Sine Rule**: The sine rule states that: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise SOLVED EXAMPLES|33 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.1|7 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC , prove that: (a-b)/c=(sin(A-B)/(2))/(cosC/2)

For any triangle ABC ,prove that (a+b)/(c)=(cos((A-B)/(2)))/(sin(C)/(2))

In any triangle ABC, prove that (i) (a-b)/( c)=("sin"(A-B)/(2))/("cos"( C)/(2)) (ii) (b-c)/(a)=("sin"(B-C)/(2))/("cos"(A)/(2))

In any Delta ABC, prove that :(a-b)/(c)=(sin((A-B)/(2)))/(cos((c)/(2)))

For any triangle ABC, prove that (b+c)cos(B+C)/(2)=a cos(B-C)/(2)

For any triangle ABC, prove that (sin(B-C))/(2)=(b-c)/(a)((cos A)/(2))])

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that: (b-c)/(b+c)=(tan((b-C)/(2)))/(tan((B+C)/(2)))

For any triangle ABC, prove that (cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

In any triangle ABC, prove that: a cos((B+C)/(2))=(b+c)(sin A)/(2)