Home
Class 11
MATHS
For any triangle ABC, prove thata(bcosC-...

For any triangle ABC, prove that`a(bcosC-c cosB)=b^2-c^2`

Text Solution

Verified by Experts

We know, `cos A = (b^2+c^2-a^2)/(2bc), cosB = (c^2+a^2-b^2)/(2ca), cos C = (a^2+b^2-c^2)/(2ab)`
`:. L.H.S. = a(bcosC-c cosB) = a(b*(a^2+b^2-c^2)/(2ab)-c*(c^2+a^2-b^2)/(2ca))`
`=1/2(a^2+b^2-c^2-c^2-a^2+b^2) = 1/2(2b^2-2c^2)`
`=b^2-c^2 = R.H.S.`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise SOLVED EXAMPLES|33 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.4|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.1|7 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

With usual notatons , in triangle ABC , prove that a(bcosC-c cos B)=b^2-c^2 .

In any Delta ABC, prove that :a(b cos C-c cos B)=b^(2)-c^(2)

In any DeltaABC , prove that a(bcosC-c cosB)=(b^(2)-c^(2))

In DeltaABC , prove that: a(bcosC-(c)cosB)=b^(2)-c^(2)

In triangle ABC , prove that a(cosC-cosB)=2(b-c)cos^2.(A)/(2) .

For any triangle ABC, prove that (b+c)cos(B+C)/(2)=a cos(B-C)/(2)

For any triangle ABC, prove that (cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

In any triangle ABC , prove that a(cosB+cot(A/2).sinB)=b+c .

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))