Home
Class 12
MATHS
Show that cos^2theta+cos^2theta(alpha+th...

Show that `cos^2theta+cos^2theta(alpha+theta)-2cosalphacostheta"cos"(alpha+theta)` is independent of `thetadot`

Text Solution

Verified by Experts

`cos^(2)theta+cos^(2)(alpha+theta)-2cosalpha cos theta cos (alpha+theta)`
`=cos^(2)theta+cos(alpha+theta)[cos(alpha+theta)-2cos alpha cos theta]`
`=cos^(2)theta+cos(alpha+theta)`
`[cos alpha cos theta-sin alpha sin theta-2cos alpha cos theta]`
`cos^(2)theta-cos(alpha+theta)(cos alpha cos theta+sin alpha sin theta)`
`=cos^(@)theta-cos(alpha+beta)cos(alpha-theta)`
`=cos^(2)theta-[cos^(2)alpha-sin^(2)theta]=cos^(2)theta+sin^(2)theta-cos^(2)alpha`
`=1-cos^(2)alpha`, which is independent of `theta`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Show that cos^(2)theta+cos^(2)theta(alpha+theta)-2cos alpha cos theta cos(alpha+theta) is independent of theta.

Show that: cos^(2)theta+cos^(2)(alpha+theta)-2cos alpha cos theta cos(alpha+theta) is independent of theta.

Prove that cos^(2)theta + cos^(2)(alpha + theta) – 2cos alpha *cos theta* cos(alpha +theta) is independent of theta .

Prove that the expression cos^(2)theta+cos^(2)(alpha+theta)-2cos alpha cos theta cos(alpha+theta) is independent of theta and also find the maximum value of the expression.

Prove that :2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta) is independent of theta.

The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alpha sin theta + cos2(alpha + theta ) is independent of theta , the value of n is

The value of 2sin^(2)theta+4cos(theta+alpha)sin alpha sin theta+cos2(alpha+theta)

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of

The expression cos^(2)(theta+b)+cos^(2)(theta+a+b)+cos^(2)a-2cos a cos(theta+b).cos(theta+a+b) is independent of A) a B) b C) theta D) None of these