Home
Class 12
MATHS
Find the range of the expression 27^(cos...

Find the range of the expression `27^(cos 2x) 81^(sin 2x)`

Text Solution

Verified by Experts

Let
`y=27^(cos 2x)xx81(sin 2x)`
`=3^(3cos 2x)xx3^(4sin 2x)`
`=3^(3cos2x+4sin2x)`
Now, `-sqrt(3^(2)+4^(2))le3 cos 2x+4 sin 2xlesqrt(3^(2)+4^(2))`
`therefore -5le3cos 2x+4 sin 2xle5`
`rArr 3^(-5)le3^(3cos2x+4sin2x)le3^(5)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the range of 7cos x-24sin x+5

find the value of expression (sin2x)/(1+cos2x) is:

Find the range of the function 5sin x-12cos x+7

Minimum value of 27^(cos 2x) 81^( sin 2x) is

Find the rang of y=cos(2sin x)

Find the least value of the expression 3sin^(2)x+4 cos^(2)x .

The minimum value of 27^(cos 2x)+81^(sin 2x) is

Find the range of =cos(cos x)+sin(cos x)