Home
Class 12
MATHS
find the range of function f(x)=sin(x+(p...

find the range of function `f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))`

Text Solution

Verified by Experts

`f(x)=sin(x+(pi)/(6))+cos(x-(x)/(6))`
`=sin x cos(pi)/(6)+cos x sin(pi)/(6)+cos x cos (pi)/(6)+sin x sin(pi)/(6)`
`=(sqrt(3)+1)/(2) (sin x+cos x)`
Now, `sin x+cos x in [-sqrt(2),sqrt(2)]`
`therefore f(x)=(sqrt(3)+1)/(2)(sin x+cos x)in[-sqrt(2)xx(sqrt(3)+1)/(2),sqrt(2)xx(sqrt(3)+1)/(2)]`
or `f(x)in[-(sqrt(3)+1)/(sqrt(2)),(sqrt(3)+1)/sqrt(2)]`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=sin(x+(pi)/(6))+cos(x+(pi)/(6)) in the interval (0,(pi)/(2)) occurs at (pi)/(12) (b) (pi)/(6)(c)(pi)/(4)(d)(pi)/(3)

Range of cos(x+(pi)/(6))cos(x-(pi)/(6)) is

find the range of f(x)=3sin x+8cos(x-(pi)/(3))+5

Find the period of the function f(x)=3sin((pi x)/(3))+4cos((pi x)/(4))

The range of the function sin([x]pi) is

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .

Write the range of the function f(x)=cos[x] where -(pi)/(2)

Find the range of the function f(x)=3 sin (sqrt((pi^(2))/(16)-x^(2))).

The range of the function y=f(x)=sin[x],-(pi)/(4)