Home
Class 12
MATHS
If tanalpha=m/(m+1) and tanbeta=1/(2m+1)...

If `tanalpha=m/(m+1)` and `tanbeta=1/(2m+1)`. Find the possible values of `tan(alpha+beta)`

A

`2`

B

`1`

C

`-1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

We have `tan (alpha+beta)=(tan alpha+tan beta)/(1-tan alpha tan beta)`
`=((m)/(m+1)+(1)/(2m+1))/(1-(m)/(m+1)xx(1)/(2m+1))`
`=(2m^(2)+2m+1)/(2m^(2)+2m+1)=1`
`rArr (alpha+beta)_("least")=(pi)/(4)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If tan alpha=(m)/(m+1) and tan beta=(1)/(2m+1) Find the possible values of (alpha+beta)

If tanalpha=(m)/(m+1)andtan beta=(1)/(2m+1) , then (alpha+beta)=?

If tan alpha=(m)/(m+1) and tan beta=(1)/(2m+1) then alpha+beta is equal to

Given that tanalpha=m//(m+1),tanbeta=1//(2m+1) , then what is the value of alpha+beta ?

If tanA=m/(m-1) and tanB=1/(2m-1) , find the value of (tanA-B) .

If tan alpha = sqrt(3) and tan beta = (1)/(sqrt(3)) , then find the value of cot (alpha + beta) .

If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal to

If tan alpha = 1/5, tan beta =(1)/(239), then the value of tan (4 alpha -beta) is