Home
Class 12
MATHS
Prove that: cos18^0-s in 18^0=sqrt(2)sin...

Prove that: `cos18^0-s in 18^0=sqrt(2)sin27^0`

Text Solution

Verified by Experts

LHS`=cos18^(@)-sin18^(@)`
`=cos18^(@)-sin(90^(@)-72^(@))=cos18^(@)-cos72^(@)`
`=sin(18^(@)+72^(2))/(2)sin(72^(@)-18^(@))/(2)`
`=sin 45^(@)sin27^(@)`
`=2(1)/sqrt(2)sin27^(@)`
`=sqrt(2) sin 27^(@)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that: cos18^(@)-sin18^(0)=sqrt(2)sin27^(0)

Prove that cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)

Prove that :cos9^(0)+sin9^(0)=sqrt(2)sin54^(@)

Prove that: sin18^(0)=(sqrt(5)-1)/(4)

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

Prove that: (cos8^(0)+sin8^(0))/(cos8^(0)-sin8^(@))=tan37^(0)

Prove that: cos^(2)45^(@)-sin^(2)15^(0)=(sqrt(3))/(4)

Prove that: cos18^(0)=(sqrt(10+2sqrt(5)))/(4)

Prove that: sin65^(@)+cos65^(0)=sqrt(2)cos20^(@)