Home
Class 12
MATHS
Prove that cosalpha+cosbeta+cosgamma+cos...

Prove that `cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)`

Text Solution

Verified by Experts

LHS `=cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)`
`=(cos alpha+cos beta)+(cos gamma+cos(alpha+beta+gamma)`
`=2 cos((alpha+beta)/(2))cos((alpha+beta)/(2))`
`+2cos((alpha+beta+gamma+gamma)/(2))cos((alpha+beta+gamma-gamma)/(2))`
`=2cos((alpha+beta)/(2))cos((alpha-beta)/(2))`
`+2cos((alpha+beta)/(2))cos((alpha+beta+2gamma)/(2))`
`=2cos((alpha+beta)/(2)){cos((alpha-beta)/(2))+cos((alpha+beta+2gamma)/(2))}`
`=2cos((alpha+beta)/(2)){2cos(((alpha-beta)/(2)+(alpha+beta+2gamma)/(2))/(2))`
`cos(((alpha+beta+2gamma)/(2)-(alpha-beta)/(2))/(2))}`
`=2cos((alpha+beta)/(2){2cos((alpha+gamma)/(2))cos((beta+gamma)/(2))}`
`=4cos((alpha+beta)/(2))cos((beta+gamma)/(2))cos((gamma+alpha)/(2))`=RHS.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/(2))cos((beta+gamma)/(2))cos((gamma+alpha)/(2))

Prove that cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/(2))cos((beta+gamma)/(2))cos((gamma+alpha)/(2))

Prove that: cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4(cos( alpha + beta ))/(2)(cos( beta + gamma ))/(2)(cos( gamma + alpha ))/(2)

Prove that cos alpha + cos beta + cos gamma + cos (alpha + beta + gamma) = 4 cos"" (alpha + beta)/(2) cos ""(beta + gamma)/(2) cos ""(gamma + alpha)/(2) .

If cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0 , and cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=6K , K in R , then K is equal to :

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If alpha + beta + gamma = 2 theta , prove that cos theta + cos(theta- alpha) + cos(theta- beta) + cos(theta -gamma) = 4(cos (alpha/2) cos (beta/2) cos (gamma/2))

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)