Home
Class 12
MATHS
Prove that sum(r=1)^n(1/(costheta+"cos"(...

Prove that `sum_(r=1)^n(1/(costheta+"cos"(2r+1)theta))=(sinntheta)/(2sintheta costhetacos (n+1)theta),(w h e r en in N)dot`

Text Solution

Verified by Experts

`S=sum_(r=1)^(n)((1)/(cos theta+cos(2r+1)theta))`
`=sum_(r=1)^(n)((sin theta)/(2cos(r+1)thetacosrthetasin theta))`
`=(1)/(2sin theta)(sum_(r=1)^(n)(sin(r+1)theta-rtheta)/(cos(4+1)theta cos rtheta))`
`=(1)/(2sin theta)(sum_(r=1)^(n)(sin(r+1)theta cos rtheta-sinrthetacos(r+1)theta)/(cos (r+1)thetacos rtheta)`
`=(1)/(2sin theta)(sum_(r=1)^(n)(r+1)theta-tan rtheta)`
`=(1)/(2sin theta)(tan (n+1)theta-tan theta)`
`=(sin n theta)/(2 sin theta. cos theta cos (n+1)theta)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^(n)((1)/(cos theta+cos(2r+1)theta))=(sin n theta)/(2sin theta*cos theta*cos(n+1)theta),(wherenin N)

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

If : (sintheta+costheta)(1-sintheta*costheta)=sin^(n)theta+cos^(n)theta,"then" : n =

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

Prove that sum_(r=0)^(n)C_(r)sin rx cos(n-r)x=2^(n-1)sin(nx)

Prove that, 1/(costheta-cos3theta)+1/(costheta-cos5theta)+1/(costheta-cos7theta)+…+to n terms = 1/(2sintheta) [cottheta-cot(n+1)theta]

Prove that (Sintheta)/(1+Costheta)+(1+Costheta)/(Sintheta)=2"Cosec"theta

Find the sum of n terms the series: 1/(costheta+cos3theta)+1/(costheta+cos5theta)+1/(costheta+cos7theta)+…