Home
Class 12
MATHS
Prove that: cos^4pi/8+cos^4(3pi)/8+cos^4...

Prove that: `cos^4pi/8+cos^4(3pi)/8+cos^4(5pi)/8+cos^4(7pi)/8=3/2`

Text Solution

Verified by Experts

We have `(7pi)/(8)=pi-(pi)/(8)` and `(5pi)/(8)=pi-(3pi)/(8)`
`rArr cos""(7pi)/(8)=-cos""(pi)/(8)` and `cos""(5pi)/(8)=-cos""(3pi)/(8)`
`rArr cos^(4)""(7pi)/(8)=cos^(4)""(pi)/(8)` and `cos^(4)""(5pi)/(8)=cos^(4)""(3pi)/(8)`
`therefore LHS=2cos^(4)""(pi)/(8)+2cos^(4)""(3pi)/(8)`
`=2[(cos^(2)""(pi)/(8))^(2)+(cos^(2)""(3pi)/(8))^(2)]`
`=2{(1+cos""(pi)/(4))/(2)}^(2)`
`[because (1+cos 2theta)/(2)=cos^(2)theta]`
`=(1)/(2){(1+cos""(pi)/(4))^(2)+(1+cos""(3pi)/(4))^(2)}^(2)`
`=(1)/(2){(1+(1)/sqrt(2))^(2)+(1-(1)/sqrt(2))^(2)}^(2)}`
`=(1)/(2){(1+(1)/(2)+sqrt(2))+(1+(1)/(2)-sqrt(2))}`
`=(3)/(2)=` RHS.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/8=3/2

Prove that: cos^(2)pi/8 + cos^(2)(3pi)/(8) + cos^(2)(5pi)/(8)+ cos^(2)(7pi)/(8)=2

Prove that: cos^(4)(pi)/(8)+cos^(4)(3 pi)/(8)+cos^(4)(5 pi)/(8)+cos^(4)(7 pi)/(8)=(3)/(2)

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II cos^2pi/8+cos^2(3pi )/8+cos^2(5pi)/8+cos^2(7pi/8)=2 Statement III: sin^2pi/8+sin^(3pi)/8+sin^2(5pi)/8sin^2 (7pi)/8=3/2

Prove that cos((pi)/(8))+cos((3 pi)/(8))+cos((5 pi)/(8))+cos((7 pi)/(8))=0

Prove that cos((2pi)/7) cos((4pi)/7) cos((8pi)/7) =1/8

Prove that cos((2pi)/7)cos((4pi)/7)cos((8pi)/7)=1/8

The value of sin^(4)(pi/8)+cos^(4)((3 pi)/8)+sin^(4)((5pi)/8)+cos^(4)((7pi)/8) is equal to =

Prove that :16cos2(pi)/(15)cos4(pi)/(15)cos8(pi)/(15)cos16(pi)/(15)=1