Home
Class 12
MATHS
If pi<x<2pi, prove that (sqrt(1+cosx)+sq...

If `pi

Text Solution

Verified by Experts

LHS`=(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))`
`=(sqrt(2)|cos""(x)/(2)|+sqrt(2)|sin""(x)/(2)|)/(sqrt(2)|cos""(x)/(2)|-sqrt(2)|sin""(x)/(2)|)=(|cos""(x)/(2)|+|sin""(x)/(2)|)/(|cos""(x)/(2)|-|sin""(x)/(2)|)`
`=(-cos""(x)/(2)+sin""(x)/(2))/(-cos""(x)/(2)-sin""(x)/(2))[because piltxlt2pi,therefore(pi)/(2)lt(x)/(x)ltpi]`
Dividing numerator and enominator by `sin(x//2)`, we get
`LHS=(cot""(x)/(2)-1)/(cot""(x)/(2)+1)=cot((x)/(2)+(pi)/(4))=RHS`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If sin2x + sin x = 0, then x is (A) n pi + (pi) / (3), 2n pi + (pi) / (6) (B) n pi, n pi + (- 1) ^ (n) ( pi) / (3) (C) n pi, 2n pi + 2 (pi) / (3), 2n pi-2 (pi) / (3) (D) 2n pi, n pi + 2 (pi) / ( 3)

pi/4 + pi - pi/3 - pi/6

The possible values of theta in (0, pi) such that sin (theta) + sin (4 theta) + sin (7 theta) = 0 are (1) (2 pi) / (9), (i) / (4 ), (4 pi) / (9), (pi) / (2), (3 pi) / (4), (8 pi) / (9) (2) (pi) / (4), (5 pi ) / (12), (pi) / (2), (2 pi) / (3), (3 pi) / (4), (8 pi) / (9) (3) (2 pi) / (9 pi) ), (pi) / (4), (pi) / (2), (2 pi) / (3), (3 pi) / (4), (35 pi) / (36) (4) (2 pi ) / (9), (pi) / (4), (pi) / (2), (2 pi) / (3), (3 pi) / (4), (8 pi) / (9)

lim_ (x rarr pi) ((sin (pi-x)) / (pi (pi-x)))

lim_(x rarr pi)(sin(pi-x))/(pi(pi-x))

(pi)/(4)-(3 pi)/(4)-(pi)/(6)+(pi)/(4)=

The polar form of (i^(255))^(3) is (cos pi)/(2)+i(sin pi)/(2)bcos pi+is in pi c*cos pi-i sin pi d(cos pi)/(2)-is in(pi)/(2)

Range of tan^(-1)((2x)/(1+x^(2))) is (a) [-(pi)/(4),(pi)/(4)] (b) (-(pi)/(2),(pi)/(2))(c)(-(pi)/(2),(pi)/(4)) (d) [(pi)/(4),(pi)/(2)]