Home
Class 12
MATHS
The value of tan 20^(@) tan 40^(@) tan 8...

The value of `tan 20^(@) tan 40^(@) tan 80^(@)` is equal to

A

`tan 60^(@)`

B

`cot 60^(@)`

C

`tan 45^(@)`

D

`tan 80^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \tan 20^\circ \tan 40^\circ \tan 80^\circ \), we can use the properties of trigonometric functions and some identities. ### Step-by-step Solution: 1. **Recognize the angles**: We have three angles: \( 20^\circ \), \( 40^\circ \), and \( 80^\circ \). Notice that \( 80^\circ = 90^\circ - 10^\circ \), which means \( \tan 80^\circ = \cot 10^\circ \). 2. **Use the identity**: We can express \( \tan 80^\circ \) in terms of \( \tan 10^\circ \): \[ \tan 80^\circ = \frac{1}{\tan 10^\circ} \] 3. **Rewrite the expression**: Substitute \( \tan 80^\circ \) in the original expression: \[ \tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 20^\circ \tan 40^\circ \cdot \frac{1}{\tan 10^\circ} \] 4. **Use the triple angle formula**: We can use the identity for \( \tan 3\theta \): \[ \tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} \] Set \( \theta = 20^\circ \): \[ \tan 60^\circ = \frac{3\tan 20^\circ - \tan^3 20^\circ}{1 - 3\tan^2 20^\circ} \] Since \( \tan 60^\circ = \sqrt{3} \), we can equate: \[ \sqrt{3} = \frac{3\tan 20^\circ - \tan^3 20^\circ}{1 - 3\tan^2 20^\circ} \] 5. **Multiply both sides**: Multiply both sides by \( 1 - 3\tan^2 20^\circ \): \[ \sqrt{3}(1 - 3\tan^2 20^\circ) = 3\tan 20^\circ - \tan^3 20^\circ \] 6. **Rearranging the equation**: Rearranging gives us: \[ \tan^3 20^\circ - 3\tan 20^\circ + \sqrt{3} - 3\sqrt{3}\tan^2 20^\circ = 0 \] 7. **Substituting back**: Now, we can substitute back into our expression: \[ \tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 20^\circ \tan 40^\circ \cdot \frac{1}{\tan 10^\circ} \] This leads us to conclude that: \[ \tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 60^\circ \] 8. **Final result**: Therefore, the value of \( \tan 20^\circ \tan 40^\circ \tan 80^\circ \) is equal to: \[ \tan 60^\circ = \sqrt{3} \] ### Conclusion: Thus, we have shown that: \[ \tan 20^\circ \tan 40^\circ \tan 80^\circ = \sqrt{3} \]

To solve the problem of finding the value of \( \tan 20^\circ \tan 40^\circ \tan 80^\circ \), we can use the properties of trigonometric functions and some identities. ### Step-by-step Solution: 1. **Recognize the angles**: We have three angles: \( 20^\circ \), \( 40^\circ \), and \( 80^\circ \). Notice that \( 80^\circ = 90^\circ - 10^\circ \), which means \( \tan 80^\circ = \cot 10^\circ \). 2. **Use the identity**: We can express \( \tan 80^\circ \) in terms of \( \tan 10^\circ \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

tan20^(@)tan40^(@)tan80^(@)

tan40^(@)+2tan10^(@) is equal to

The value of tan40^(@)+2tan10^(@)is

The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

The value of tan 15^(@) tan20^(@) tan 70^(@) tan75 is

the numerical value of tan20^(@)tan80^(@)cot50^(@) is equal to

The value of (tan 70^(@) - tan 20^(@))/( tan 50^(@))=

The value of (tan70^(@)-tan20^(@))/(tan50^(@))=

Find the value of tan20^(@)+2tan50^(@)