Home
Class 12
MATHS
Prove that (cos 3 x)/(sin 2 xsin 4x)+(...

Prove that
`(cos 3 x)/(sin 2 xsin 4x)+(cos 5x)/(sin 4xsin 6x)+(cos 7x)/(sin 6xsin 8x)+(cos 9x)/(sin 8x sin 10x)`
`=(1)/(2) (co sec x)[co sec2x-co sec 10x]`

Text Solution

Verified by Experts

Let
`f(x)=(cos 3x)/(sin 2x sin 4x)+(cos 5x)/(sin 4xsin 6x)+(cos 7x)/(sin 6xsin 8x)`
`+(cos 9x)/(sin 8x sin 10x)`
Multiply and divide by `(2sinx)` in whole expression to get
`f(x)=(sin 4x-sin2x)/(2sin x sin 2x sin 4x)+(sin6x-sin4x)/(2sin x sin 4x sin 6x)`
`+(sin 8x-sin6x)/(2sin x sin 6x sin 8x)+(sin 10x-sin 8x)/(2sin x sin 8x sin 10x)`
`=(1//2)co sec x[co sec 2x-co sec 10x]`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that (cos3x)/(sin2x sin4x)+(cos5x)/(sin4x sin6x)+(cos7x)/(sin6x sin8x)+(cos9x)/(sin8x sin10x)=(1)/(2)(cos ecx)[cos ec2x-cos ec10x]

(cos 2x sin x + cos 6x sin 3x)/(sin 2x sin x + sin 6x sin 3x) =cot 5x

Prove that (cos x + sin x)/(cos x - sin x) - (cos x - sin x)/(cos x + sin x) = 2 tan x

(" sin 8x cos x- sin 6x cos 3x")/(" cos 2x cos x - sin 4x sin 3x")=

(cos 9x - cos 5x)/(sin 17x - sin 3x) = (-sin 2x)/(cos 10x)

(cos 4x sin 3x -cos 2x sin x )/(sin 4x sin x+ cos 6x cos x)= tan 2x

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

show that (1)/(2sin x)(csc2x-cos ec4x)=(cos3x)/(sin2x sin4x) and hence prove that (cos3x)/(sin2x sin4x)+(cos5x)/(sin4x sin6x)+(cos7x)/(sin6x sin8x)+......+ terms =(1)/(2sin x)[cos ec2x-cos ec(2n+2)x]

Prove that ("cos " 6x + " cos " 4x)/("sin " 6x - "sin " 4x) = " cot x

Prove that :(cos9x-cos5x)/(sin17x-sin3x)=(-sin2x)/(cos10x)