Home
Class 12
MATHS
If cos(A+B+C)=cosAcosBcosC , then find t...

If `cos(A+B+C)=cosAcosBcosC ,` then find the value of `(8sin(B+C)sin(C+A)sin(A+B))/(sin2Asin2Bsin2C)`

Text Solution

Verified by Experts

We have to prove that
`cos A cos (B+C)-sinA sin (B+C)=cos A cos B cos`
`rArr cos A (cos (B+C)-cos B cos C )=sin A sin (B+C)`
`rArr sin(B+C)=-(cos A sin B sinC)/(sin A)`
Similarly
`sin (C+A)=(-cos B sin C sin A)/(sin B)`
and `sin (A+B)=(-cos C sin A sin B)/(sin C)`
`therefore sin(A+B)sin(B+C)sin(C+A)`
`=-(cos A sin B sin C)/(sin A)(cos B sin Csin)/(sin B)`
`(cos C sin A sin)/(sin C)`
`=-(1)/(8)sin 2A sin 2B sin 2C`
`rArr (8sin(B+C)sin(C+A)sin(A+B))/(sin 2A sin 2B sin 2C)=-1`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If cos(A+B+C)=cos A cos B cos C, then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin2sin2C)

What is the value of sin(A+B)sin(A-B)+sin(B+C)sin(B-C)+sin(C+A)sin(C-A) ?

In /_ABC if cos A cos B+sin A sin B sin C=1, then the value of (sin^(2)A)/(sin^(2)B)+2(sin^(2)B)/(sin^(2)C)+(sin^(2)C)/(sin^(2)A) is equal to

In quadrilateral ABCD, if sin((A+B)/(2))cos((A-B)/(2))+sin((C+D)/(2))cos((C-D)/(2))=2 then find the value of sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to-

Prove that: (sin(A-C)+2sin A+sin(A+C))/(sin(B-C)+2sin B+sin(B+C))=(sin A)/(sin B)

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))

Prove that sin(A+B+C)=sin A cos B cos C+cos A sin B cos C+cos A cos B sin C-sin A sin B sin Ccos(A+B+C)=cos A cos B cos C-cos A sin B sin C-sin A cos B sin C-sin A sin B cos C

If A, B, C are angle of a triangle ABC, then the value of the determinant |(sin (A/2), sin (B/2), sin (C/2)), (sin(A+B+C), sin(B/2), cos(A/2)), (cos((A+B+C)/2), tan(A+B+C), sin (C/2))| is less than or equal to

Prove that: (cos(A+B+C)+cos(-A+B+C)+cos(A-B+C)+cos(A+B-C))/(sin(A+B+C)+sin(-A+B+C)+sin(A-B+C)-sin(A+B-C))=