Home
Class 12
MATHS
If x+y+z=pi/2, then prove that |sinxsiny...

If `x+y+z=pi/2,` then prove that `|sinxsinysinzcosxcosycoszcos^3xcos^y ycos^3z|=0`

Text Solution

Verified by Experts

D=`|{:(sinx,siny,sinz),(cosx,cosy,cosz),(cos^(3)x,cos^(3)y,cos^(3)z):}|`
Expanding along `R_(3)`, we get
`D=sum cos^(3)x sin(y-z)`
Given `x+y+z=(pi)/(2)`
`therefore D=sumsin^(3)(y+z)sin(y-z)`
`=sumsin^(2)(y+z)sin(y+z)sin(y-z)`
`=sum (1-sin^(2)x)(sin^(2)y-sin^(2)z)`
=0
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=pi/2, then prove that |[sinx,siny,sinz],[cosx,cosy,cosz],[cos^3x,cos^3 y,cos^3z]|=0

If x+y+z= pi/2 , prove that : cos(x-y-z) + cos(y-z-x) + cos (z-x-y)-4cosx cosy cosz=0

If cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y+z= 3/2, then prove that x=y=z

If x+y=z prove that x^(3)+y^(3)+3xyz=z^(3)

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If x + y + z = xyz , prove that (3x -x^(3))/ (1-3x^(2)) + (3y -y^(3))/(1- 3y^(2)) +(3z -z^(3))/(1- 3z^(2)) = (3x -x^(3))/(1-3x)^(2) * (3y- y^(3))/(1-3x)^(2)* (3z- z^(3))/(1-3z)^(2) .

If x + y + z = 0 , then what is (y+z-x)^(3) + (z+x-y)^(3) + (x+y-z)^(3) equal to ?

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .