Home
Class 12
MATHS
Prove that in triangle ABC, 2cos A cosB ...

Prove that in `triangle ABC, 2cos A cosB cos Cle(1)/(8)`.

Text Solution

Verified by Experts

`2 cos A cos B cos C`
`[cos(A+B)+cos(A-B)]cos C`
`=[-cosC+cos(A-B)]cosC`
`=cos(A-B)cosC-cos^(2)C`
`le cos C-cos^(2)C` [As `cos (A-B)le1`]
`=1//4-(cosC-1//2)^(2)le1//4`
So, `cos A cos B cos C le1//8`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC,cos A+cos B+cos C

In a triangle ABC, cos A+cos B+cos C=

Prove that in triangle ABC , cos^(2)A + cos^(2)B + cos^(2)C lt 3/4 .

Prove that in triangle ABC, sin A+sin B+Cle(3sqrt(3))/(2)

Prove that in a triangle ABC, (cosB-cosC)/(cosA+1) =(c-b)/a

Prove that, in a triangle ABC, b(a cos C - c cos A) = a^2 - c^2

In triangle ABC,cos A+2cos B+cos C=2, then-

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

Prove in any triangle ABC that (i) a(cos B+cos C)=2(b+c) "sin"^(2)(A)/(2) (ii) a(cos C- cosB)= 2(b-c )"cos"^(2)(A)/(2)