Home
Class 12
MATHS
In triangle ABC, prove that sin(A/2)+sin...

In `triangle ABC`, prove that `sin(A/2)+sin(B/2)+sin(C/2)le(3)/(2)`.

Text Solution

Verified by Experts

`sin(A)/(2)+sin(B)/(2)+sin(C)/(2)`
`=2sin(A+B)/(4)cos(A-B)/(4)+sin(C)/(2)`
`=2sin(pi-C)/(4)cos(A-B)/(4)+cos(pi-C)/(2)`
`=2sin(pi-C)/(4)cos(A-B)/(4)+1-2sin^(2)(pi-C)/(4)`
`le1+2sin(pi-C)/(4)-2sin^(2)(pi-C)/(4)(because cos(A-B)/(4)le1)`
`=1-2[(sin(pi-C)/(4)-(1)/(2))^(2)-(1)/(4)]`
`=(3)/(2)-2(sin(pi-C)/(4)-(1)/(2))^(2)le(3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, prove that sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)le(1)/(8) and hence, prove that co sec ""(A)/(2)+co sec""(B)/(2)+co sec""(C)/(2)ge6 .

In triangle ABC, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))<=(3)/(2) Hence,deduce that cos((pi+A)/(4))cos((pi+B)/(4))cos((pi+C)/(4))<=(1)/(8)

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))

In triangle ABC , prove that b^2sin2C+c^2sin2B=2bcsinA .

In triangle ABC , prove that (sin(A-B))/(sin(A+B))=(a^2-b^2)/(c^2) .

In triangle ABC , prove that a^2sin(B-C)=(b^2-c^2)sinA .

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0

In any triangle ABC, prove that following: a(sin A)/(2)sin((B-C)/(2))+b(sin B)/(2)sin((C-A)/(2))+sin((A-B)/(2))=0