Home
Class 12
MATHS
Prove that sum(k=1)^(n-1)(n-k)cos(2kpi)...

Prove that `sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2,w h e r engeq3i sa nin t ege r`

Text Solution

Verified by Experts

`S=sum_(k=1)^(n-1)(n-k)cos""(2kpi)/(n)`
`=(n-1)cos""(2pi)/(n)+(n-2)cos 2 (2pi)/(n)+......+1cos(n-1)(2pi)/(n)`
We know that `cos theta=cos(2pi-theta)`. Replacing each angle `theta` by `2pi-theta` in Eq. i, we get
`S=(n-1)cos(n-1)(2pi)/(n)+(n-2)cos(n-2)(2pi)/(n)+.........+1 cos ""(2pi)/(n)` [using Eq. i]
Adding terms having the same angle and taking n common, we have
`2S=n[cos((2pi)/(n))+cos((4pi)/(n))+cos((6pi)/(n))+......+cos(n-1)(2pi)/(n)]`
`=n[(sin(n-1)((pi)/(n)))/(sin((pi)/(n)))cos((2pi)/(n))+(n-1)(2pi)/(n))/(2)`
`=n[(sin(pi-(pi)/(n)))/(sin((pi)/(n)))cospi]=-n`
`therefore S=-n//2`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(k=1)^(n-1)(n-k)(cos(2k pi))/(n)=-(n)/(2) wheren >=3 is an integer

Prove that sum_(r=1)^(k)(-3)^(r-1)3nC_(2r-1)=0, where k=3n/2 and n is an even integer.

Prove that sum_(r=1)^(k)(-3)^(r-1)3nC_(2r-1)=0, where k=(3n/2 and n is an even integer

Prove that sum_(r=1)^(k)(-3)^(r-1)C(3n,2r-1)=0 where k=(3n)/(2) and n is an even positive integer.

prove that sum_(k=1)^(n)k2^(-k)=2[1-2^(-n)-n*2^(-(n+1)))

If n be integer gt1, then prove that sum_(r=1)^(n-1) cos (2rpi)/n=-1

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .

Prove that sum_(r=1)^(n)((1)/(cos theta+cos(2r+1)theta))=(sin n theta)/(2sin theta*cos theta*cos(n+1)theta),(wherenin N)