Home
Class 12
MATHS
If tanA-tan B=x, and cot B-cotA=y, then ...

If `tanA-tan B=x`, and `cot B-cotA=y`, then find the value of `cot(A-B)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cot(A - B) \) given that \( \tan A - \tan B = x \) and \( \cot B - \cot A = y \), we can follow these steps: ### Step 1: Use the cotangent subtraction formula The formula for \( \cot(A - B) \) is given by: \[ \cot(A - B) = \frac{1}{\tan(A - B)} \] We will first find \( \tan(A - B) \). ### Step 2: Apply the tangent subtraction formula The tangent subtraction formula states: \[ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \] From the problem, we know \( \tan A - \tan B = x \). Thus, we can rewrite it as: \[ \tan(A - B) = \frac{x}{1 + \tan A \tan B} \] ### Step 3: Express \( \tan A \tan B \) in terms of \( y \) We also know that: \[ \cot B - \cot A = y \] We can express cotangent in terms of tangent: \[ \cot B = \frac{1}{\tan B}, \quad \cot A = \frac{1}{\tan A} \] Thus: \[ \frac{1}{\tan B} - \frac{1}{\tan A} = y \] This can be rewritten as: \[ \frac{\tan A - \tan B}{\tan A \tan B} = y \] Substituting \( \tan A - \tan B = x \): \[ \frac{x}{\tan A \tan B} = y \] From this, we can express \( \tan A \tan B \): \[ \tan A \tan B = \frac{x}{y} \] ### Step 4: Substitute back into the tangent subtraction formula Now we can substitute \( \tan A \tan B \) back into the formula for \( \tan(A - B) \): \[ \tan(A - B) = \frac{x}{1 + \frac{x}{y}} = \frac{x}{\frac{y + x}{y}} = \frac{xy}{y + x} \] ### Step 5: Find \( \cot(A - B) \) Now we can find \( \cot(A - B) \): \[ \cot(A - B) = \frac{1}{\tan(A - B)} = \frac{y + x}{xy} \] ### Final Answer Thus, the value of \( \cot(A - B) \) is: \[ \cot(A - B) = \frac{y + x}{xy} \]

To find the value of \( \cot(A - B) \) given that \( \tan A - \tan B = x \) and \( \cot B - \cot A = y \), we can follow these steps: ### Step 1: Use the cotangent subtraction formula The formula for \( \cot(A - B) \) is given by: \[ \cot(A - B) = \frac{1}{\tan(A - B)} \] We will first find \( \tan(A - B) \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.1|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If tanA-tanB=x and cotB-cotA=y , then cot(A-B)=?

If tan A - tan B =x and cot B - cot A=y, then: cot(A-B)=

If tan A - tan B = x and cot B - cot A =y , then what is cot ( A -B) equal to ?

If tan x+tan y=25 and cot x+cot y=30 then the value of tan(x+y) is

(i) If tanA-tan B=x and cot B- cot A=y . Prove that cot(A-B)=1/x + 1/y . (ii) If 2 cos A = x+1/x, 2 cos B = y + 1/y , then show that 2 cos (A-B)= x/y+y/x .

If tan A+tan B=p and cot A+cot B=q then cot(A+B)=

If tanA-tanB=x and cotB-cotA=y , then cot(A-B) . is equal to (i) 1/y-1/x (ii) 1/x-1/y (iii)1/y+1/x (iv) 1/(x+y)

If tan A-tan B=xand cot B-cot A=y prove that cot(A-B)=(1)/(x)+(1)/(y)

In Delta ABC, if cot A+cot B+cot C=0 then find the value of cos A cos B cos C.