Home
Class 12
MATHS
If xcostheta=ycos(theta+(2pi)/3)=z cos(t...

If `xcostheta=ycos(theta+(2pi)/3)=z cos(theta+(4pi)/3)` , prove that `x y+y z+z x=0.`

Text Solution

Verified by Experts

Let `x cos theta=y cos(theta+(2pi)/(3))=z cos(theta+(4pi)/(3))=k`
Now, `xy+yz+zx=xyz((1)/(x)+(1)/(y)+(1)/(z))`
`=(xyz)/(4)(cos theta+{cos(theta+(2pi)/(3))+cos(theta+(4pi)/(3))})`
`=(xyz)/(4k)(cos theta+2cos((pi)/(3))cos (theta+pi))`
`=(xyz)/(k)(cos theta-2(1)/(2)cos theta)=0`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If x cos theta=y cos(theta+(2 pi)/(3))=z cos(theta+(4 pi)/(3)), prove that xy+yz+zx=0

If x sintheta=ysin(theta+(2pi)/(3))=z sin(theta+(4pi)/(3)), then

If x*cos theta=y*cos(theta+(2 pi)/(3))=2*cos(theta+(4 pi)/(3)) then evaluate xy+yz+zx

If x cos theta=y cos(theta+(2 pi)/(3))=z cos(theta+(4 pi)/(3)), then write the value of (1)/(x)+(1)/(y)=(1)/(z)

If xcostheta=ycos(theta+(2pi)/(3))=zcos(theta+(4pi)/(3)) , then (1)/(x)+(1)/(y)+(1)/(z)=?

If (x)/(cos theta)=(y)/(cos(theta-(2 pi)/(3)))=(z)/(cos(theta+(2 pi)/(3))) then x+y+z is (a)1(b)0(c)-1(d) none of these

If (x)/(cos theta)=(y)/(cos(theta-(2pi)/(2)))=(2)/(cos(theta+(2pi)/(3))), then x+y+z=

If frac {x}{cos theta} = frac {y}{cos(theta -2pi/3)} = frac {z}{cos(theta +2pi/3)} then x + y + z is equal to