Home
Class 12
MATHS
If cos(A+B)sin(C+D)=cos(A-B)sin(C-D), pr...

If `cos(A+B)sin(C+D)=cos(A-B)sin(C-D)`, prove that `cot A cot B cot C=cotD`.

Text Solution

Verified by Experts

`cos(A+B)sin(C+D)=cos(A-B)sin(C-D)`
or `(cos(A+B))/(cos(A-B))=(sin((C-D))/(sin(C+D))`
or `(cos(A+B)+cos(A-B))/(cos(A+B)-cos(A-B))=(sin(C-D)+sin(C+D))/(sin(C-D)-sin(C+D))`
Or `(2cos A cos B)/(-2sin A sinB)=(2sinC cos D)/(-2sin D cosC)`
or `cotA cotB=tanC cot D`
or `cot A cot B cot C=cotD`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.4|26 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.2|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

a cot A+b cot B+c cot C=

Statement:1 If cos(A+B)sin( C +D) = cos(A-B) sin(C-D) , then the values of cotAcotBcotC is cotD. And Statement:2: If cos(A+B) sin(C+D)= cos(A-B) sin(C-D) then the value of tanAtanBtanC is tanD.

(cos(A+B))/(cos(A-B))+(cos(C-D))/(cos(C+D))=0rArr cot A cot B cot C=

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in A.P.

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in AP

(cos(A+B))/(cos(A-B))+(cos(C-D))/(cos(C+D))=0rArr cot A cot B cot C cot D=

If (" cos " (A+B))/(" cos " (A-B)) =(" sin " (C+D))/(" sin " (C -D)) , prove that tan A tan B tan C + tan D=0

sin(B+C-A),sin(C+A-B),sin(A+B-C)sin(B+C-A),sin(C+A-B),sin(A+B-C) are A.P., then cot A,cot B,cot C are in GP(b)HP(c)AP(d) none of these

If A+B+C= 90^@ , Prove that cot A+cot B+cot C=cot A cot B cot C

If A+B+C= pi and cos A=cos B. cosC,prove that cot B cot C= 1/2