Home
Class 12
MATHS
Find the value of (4cos^(2)9^(@)-1)(4cos...

Find the value of `(4cos^(2)9^(@)-1)(4cos^(2)27^(@)-1)`
`(4cos^(2)81^(@)-1)(4cos^(2)243^(@)-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{(4 \cos^2 9^\circ - 1)(4 \cos^2 27^\circ - 1)}{(4 \cos^2 81^\circ - 1)(4 \cos^2 243^\circ - 1)} \] ### Step 1: Use the identity \(4 \cos^2 \theta - 1 = \sin 3\theta / \sin \theta\) We can rewrite \(4 \cos^2 \theta - 1\) using the identity: \[ 4 \cos^2 \theta - 1 = 3 - 4 \sin^2 \theta = \frac{\sin 3\theta}{\sin \theta} \] ### Step 2: Substitute the angles into the identity Now, we substitute the angles into the identity: 1. For \(4 \cos^2 9^\circ - 1\): \[ 4 \cos^2 9^\circ - 1 = \frac{\sin 27^\circ}{\sin 9^\circ} \] 2. For \(4 \cos^2 27^\circ - 1\): \[ 4 \cos^2 27^\circ - 1 = \frac{\sin 81^\circ}{\sin 27^\circ} \] 3. For \(4 \cos^2 81^\circ - 1\): \[ 4 \cos^2 81^\circ - 1 = \frac{\sin 243^\circ}{\sin 81^\circ} \] 4. For \(4 \cos^2 243^\circ - 1\): \[ 4 \cos^2 243^\circ - 1 = \frac{\sin 729^\circ}{\sin 243^\circ} \] ### Step 3: Substitute these into the original expression Now substituting these values into the original expression gives us: \[ \frac{\left(\frac{\sin 27^\circ}{\sin 9^\circ}\right) \left(\frac{\sin 81^\circ}{\sin 27^\circ}\right)}{\left(\frac{\sin 243^\circ}{\sin 81^\circ}\right) \left(\frac{\sin 729^\circ}{\sin 243^\circ}\right)} \] ### Step 4: Simplify the expression Now we can simplify the expression: - The \(\sin 27^\circ\) in the numerator and denominator cancels out. - The \(\sin 81^\circ\) in the numerator and denominator cancels out. - This simplifies to: \[ \frac{\sin 729^\circ}{\sin 9^\circ} \] ### Step 5: Simplify \(\sin 729^\circ\) Using the periodic property of sine: \[ \sin 729^\circ = \sin(729 - 720)^\circ = \sin 9^\circ \] ### Step 6: Final simplification Now substituting back, we have: \[ \frac{\sin 9^\circ}{\sin 9^\circ} = 1 \] Thus, the value of the original expression is: \[ \boxed{1} \]

To solve the problem, we need to evaluate the expression: \[ \frac{(4 \cos^2 9^\circ - 1)(4 \cos^2 27^\circ - 1)}{(4 \cos^2 81^\circ - 1)(4 \cos^2 243^\circ - 1)} \] ### Step 1: Use the identity \(4 \cos^2 \theta - 1 = \sin 3\theta / \sin \theta\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.5|6 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.6|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.3|13 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of log_(sqrt(3))((4cos^(2)9^(@)-1)(4cos^(2)27^(@)-1)(4cos^(2)81^(@)-1)(4cos^(2)243^(@)-1))

Find the value of : cos^(-1)(cos 4)

Prove that (4cos^(2)9^(@)-3)(4cos^(2)27^(0)-3)=tan9^(@)

Find the value of 5tan^(2)30^@+4cos^(2)45^@-sin^(2)60^@+1

Find the value of sin((1)/(4)cos^(-1)((-1)/(9)))

Find general solution of 4cos^(2)x=1

The value of (cos^(4)1^(@)+cos^(4)2^(@)+....+cos^(4)179^(@))-(sin^(4)1^(@)+sin^(4)2^(@)+......+sin^(4)179 equals

Evaluate cos(sin^(-1)(4/5)+cos^(-1)(2/3))

Find the value of 4cos[cos^(-1)((1)/(4)(sqrt(6)-sqrt(2)))-cos^(-1)((1)/(4)(sqrt(6)+sqrt(2)))] .

CENGAGE-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise 3.4
  1. Prove that cos^(3)thetasin3theta+sin^(3)theta cos 3theta=(3)/(4)sin 4 ...

    Text Solution

    |

  2. (sin^2 3A)/(sin^2A)-(cos^2 3A)/(cos^2A)=

    Text Solution

    |

  3. Prove that (1+sec 2 theta)(1+sec 4 theta)(1+sec 8 theta)=(Tan 8theta)/...

    Text Solution

    |

  4. If in an isosceles triangle with base 'a', vertical angle 20^@ and lat...

    Text Solution

    |

  5. In DeltaABC, a = 3, b = 4 and c = 5, then value of sinA + sin2B + sin...

    Text Solution

    |

  6. If cosA=3/4, then 32 sin, A/2 sin, (5A)/2= (A) sqrt(11) (B) -sqrt(11) ...

    Text Solution

    |

  7. Find the value of (4cos^(2)9^(@)-1)(4cos^(2)27^(@)-1) (4cos^(2)81^(@...

    Text Solution

    |

  8. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  9. In a triangle ABC, if sin A sin(B-C)=sinC sin(A-B), then prove that co...

    Text Solution

    |

  10. Let a=(pi)/(7), then (a) show that sin^(2)3a-sin^(2)a=sin2asin3a (...

    Text Solution

    |

  11. Show that 1/(sin 10^@) - sqrt3/(cos 10^@) = 4

    Text Solution

    |

  12. Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + co...

    Text Solution

    |

  13. If tan x=(a)/(b) and tan 2x=(b)/(a+b) find the smallest positive value...

    Text Solution

    |

  14. tantheta+tan(6 0^0+theta)+tan(12 0^0+theta)=3tan3theta

    Text Solution

    |

  15. If A=110^(@), then prove that (1+sqrt(1+tan^(2)2A))/(tan2A)=-tan A.

    Text Solution

    |

  16. If alpha and beta are the two different roots of equations alpha cos t...

    Text Solution

    |

  17. If tan beta=cos theta tan alpha, then prove that tan^(2)""(theta)/(2)=...

    Text Solution

    |

  18. If cos theta=a/(b+c), cos phi= b/(a+c) and cos psi=c/(a+b) where theta...

    Text Solution

    |

  19. If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta),prove that ta...

    Text Solution

    |

  20. If tan theta tan phi=sqrt((a-b)/(a+b)), prove that a-bcos 2theta)(a-...

    Text Solution

    |