Home
Class 12
MATHS
Sum the series: sqrt(1+cos alpha)+sqrt(1...

Sum the series: `sqrt(1+cos alpha)+sqrt(1+cos 2alpha)+sqrt(1+cos 3alpha)` +.......to n terms, where `0ltalphaltpi`

Text Solution

AI Generated Solution

The correct Answer is:
To sum the series \( S = \sqrt{1 + \cos \alpha} + \sqrt{1 + \cos 2\alpha} + \sqrt{1 + \cos 3\alpha} + \ldots + \sqrt{1 + \cos n\alpha} \), we can use trigonometric identities and properties. Let's break it down step by step. ### Step 1: Rewrite the terms using trigonometric identities We know that: \[ \sqrt{1 + \cos x} = \sqrt{2} \cos\left(\frac{x}{2}\right) \] Using this identity, we can rewrite each term in the series: \[ S = \sqrt{1 + \cos \alpha} + \sqrt{1 + \cos 2\alpha} + \sqrt{1 + \cos 3\alpha} + \ldots + \sqrt{1 + \cos n\alpha \] \[ = \sqrt{2} \left( \cos\left(\frac{\alpha}{2}\right) + \cos\left(\frac{2\alpha}{2}\right) + \cos\left(\frac{3\alpha}{2}\right) + \ldots + \cos\left(\frac{n\alpha}{2}\right) \right) \] ### Step 2: Sum the cosine terms The sum of cosines can be expressed using the formula: \[ \sum_{k=0}^{n-1} \cos(a + kd) = \frac{\sin\left(\frac{nd}{2}\right) \cos\left(a + \frac{(n-1)d}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] In our case, \( a = \frac{\alpha}{2} \) and \( d = \frac{\alpha}{2} \). Thus, we can write: \[ \sum_{k=1}^{n} \cos\left(\frac{k\alpha}{2}\right) = \frac{\sin\left(\frac{n\alpha}{4}\right) \cos\left(\frac{\alpha}{4} + \frac{(n-1)\alpha}{4}\right)}{\sin\left(\frac{\alpha}{4}\right)} \] ### Step 3: Substitute back into the series Now substituting back into our expression for \( S \): \[ S = \sqrt{2} \cdot \frac{\sin\left(\frac{n\alpha}{4}\right) \cos\left(\frac{(n+1)\alpha}{4}\right)}{\sin\left(\frac{\alpha}{4}\right)} \] ### Final Result Thus, the sum of the series is: \[ S = \frac{\sqrt{2} \sin\left(\frac{n\alpha}{4}\right) \cos\left(\frac{(n+1)\alpha}{4}\right)}{\sin\left(\frac{\alpha}{4}\right)} \]

To sum the series \( S = \sqrt{1 + \cos \alpha} + \sqrt{1 + \cos 2\alpha} + \sqrt{1 + \cos 3\alpha} + \ldots + \sqrt{1 + \cos n\alpha} \), we can use trigonometric identities and properties. Let's break it down step by step. ### Step 1: Rewrite the terms using trigonometric identities We know that: \[ \sqrt{1 + \cos x} = \sqrt{2} \cos\left(\frac{x}{2}\right) \] Using this identity, we can rewrite each term in the series: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.8|9 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.6|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Sum the series : (1+cos alpha) +(1+ cos2alpha) +(1+ cos3alpha) +..... to n terms.

Sum: sqrt(1 + sin 2alpha) + sqrt(1 + sin 4alpha) + sqrt(1 + sin 6alpha) +... to 20 terms.

(sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

Find the sum of the series cos^(3)alpha+cos^(3)2 alpha+...... to n terms

(sqrt(2)-sin alpha-cos alpha)/(sin alpha-cos alpha) is equal to

If a_(1),alpha_(2)...,alpha_(n) are in A.P.with common difference d,then the sum of the series,sin d[cos ec alpha_(1)cos ec alpha_(2)+cos ec alpha_(2)cos ec alpha_(3)+...+...+cos ec alpha_(n-1)cos ec alpha_(n) is:

cot_(sin x)^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then