Home
Class 12
MATHS
If A+B+C=180^0, prove that : cos^2, A/2 ...

If `A+B+C=180^0`, prove that : `cos^2, A/2 + cos^2, B/2 - cos^2, C/2 = 2cos, A/2 cos, B/2 sin, C/2`

Text Solution

Verified by Experts

(a) `LHS=cos^(2)""(A)/(2)+cos^(2)""(B)/(2)-cos^(2)""(C)/(2)`
`=cos^(2)""(A)/(2)sin^(2)""(C)/(2)sin^(2)""(B)/(2)`
`=cos^(2)""(A)/(2)+sin((C-B)/(2))sin((C+B)/(2))`
`=cos^(2)""(A)/(2)+sin((C-B)/(2))cos((A)/(2))`
`=cos((A)/(2))[sin((B+C)/(2))+sin((C-B)/(2))]`
`=2cos((A)/(2))cos((B)/(2))sin((C)/(2))`
(b) `cos^(2)""(A)/(2)+cos^(2)""(B)/(2)+cos^(2)""(C)/(2)`
`=(1+cosA)/(2)+(1+cosB)/(2)+(1+cosC)/(2)`
`=(3+cosA+cosB+cosC)/(2)`
`=(3+1+4sin""(A)/(2)sin""(B)/(2)sin""(C)/(2))/(2)`
`=2+2sin""(A)/(2)sin""(B)/(2)sin""(C)/(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

If A+B+C=180^0 , prove that : cos^2 A + cos^2 B + cos^2 C + 2cosA cosB cosC=1 .

If A+B+C=180^0 , prove that : cos^2 A+cos^2 B-cos^2 C=1-2sinA sinB cosC

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

If A +B+C = 180^circ , prove that cos A/2+ cos B/2 +cos C/2 = 4cos (pi-A)/4 * cos(pi-B)/4 cos(pi-C)/4

If A+B+C=180^@ prove that sin A+sin B+sin C=4 "cos" A/2 "cos" B/2 "cos" C/2

If A+B+C=180, prove that cos^(2)A+cos^(2)B+cos^(2)C=1-2cos A cos B cos C

If A+B+C= 360^(@) ,prove that: 1-cos^(2)A-cos^(2)B-cos^(2)C+2cosA cos B cos C=0

If A+B+C = pi , prove that : cos2A-cos2B -cos2C = -1+4cosAsinBsinC

If A+B+C=pi , prove that : sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)