Home
Class 12
MATHS
cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB ...

`cos^2 A + cos^2 B +cos^2 C=1+2cosA cosB cosC`.

Text Solution

Verified by Experts

(a) `LHS=cos^(2)A+cos^(2)A+cos^(2)B+cos^(2)C` ltbr. `=(3+(cos 2A+cos2B+cos2C))/(2)`
now given `A+B=C`
or `A+B+(pi-C)=pi`
or `A+B+D=pi`, where `D=pi-C`
`rArr LHS=(3+(cos2A+cos2B+cos2C))/(2)`
`=(3+(Cos2A+Cos2B+cos2D))/(2)`
`=1-2cos A cos B cos D`
`=1-2cos A cos B cos (pi-C)`
`=1+2cos A cos B cos C=RHS`.
(b) Given `alpha+beta=60^(@)`
`cos^(2)alpha+cos^(2)beta-cos alpha cos beta`
`=1-sin^(2)alpha+cos^(2)beta-cos alpha cos beta`
`=1+cos(alpha+beta)cos(alpha-beta)-cos alpha cos beta`
`=1+cos60^(@)cos(alpha-beta)-cos alpha cos beta`
`=1+(cos alpha cos beta+sin alpha sin beta)/(2)-cos alpha cos beta`
`=1-(cos(alpha+beta))/(2)`
`=1-(1)/(4)=(3)/(4)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2 A + cos^2 B + cos^2 C + 2cosA cosB cosC=1 .

If A+B+C=180^0 , prove that : cos^2 A+cos^2 B-cos^2 C=1-2sinA sinB cosC

If A+B+C=180, prove that cos^(2)A+cos^(2)B+cos^(2)C=1-2cos A cos B cos C

If A+B+C=180^0 , prove that : sin^2 A + sin^2 B + sin^2 C =2 (1+cosA cosB cosC)

If A+B+C=2S , prove that : cos^2 S + cos^2 (S-A) + cos^2 (S-B) + cos^2 (S-C) = 2+2cosA cosB cosC .

cos^(2)A+cos^(2)B+cos^(2)C=1-cos A cos B cos C prove that

If A+B+C= 360^(@) ,prove that: 1-cos^(2)A-cos^(2)B-cos^(2)C+2cosA cos B cos C=0

If A+B+C=180^(@) then cos2A+cos2B+cos2C=1-4cos A cos B cos C 2.If A+B+C=0 then cos A+cos B+cos C=-1+4(cos A)/(2)(cos B)/(2)(cos C)/(2)

If : A+B+C=pi, "then" : 1-cos^(2) A-cos^(2)B-cos^(2)C= A) 2 cos A * cos B * cos C B) 2 sin A * cos B * cos C C) 2 cos A * sin B * cos C D) 2 cos A * cos B * sin C