Home
Class 12
MATHS
In a triangle ABC, cos 3A+cos 3B+cos3C=1...

In a triangle ABC, `cos 3A+cos 3B+cos3C=1` and `angleA+angleBltangleC`, then find possible measure of `angleC`.

Text Solution

Verified by Experts

The correct Answer is:
`120^(@)`

`cos3A+cos3B+cos 3C=1`
`rARr 2cos(3(A+B))/(2)cos(3(A-B))/(2)=sin^(2)(3C)/(2)`
`rARr -sin(3C)/(2)cos(3(A-B))/(2)=sin^(2)(3C)/(2)`
`rArr sin(3C)/(2)[cos(3(A-B))/(2)-cos(3(A+B))/(2))0`
`rArr 2sin(3A)/(2)sin(3B)/(2)sin(3C)/(2)=0`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.9|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.7|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, cos A+cos B+cos C=

In a triangle ABC,cos A+cos B+cos C

In a triangle ABC, a cos A+b cos B+ c cos C=

In a triangle ABC,cos3A+cos3B+cos3C=1, then find any one angle.

In triangle ABC,cos A+2cos B+cos C=2, then-

If in a triangle ABC,3R=4r then cos A+cos B+cosC =

In a triangle ABC ,cos A + cos B + cos C = 3/2 , then the triangle ,is

In an isosceles triangle ABC, AB=AC and angleA=3angleB. Find angleC .

In a triangle ABC is 2 cos (B)/(2) cos (C )/(2)=(1)/(2)+ ((b+c)/(a)) sin (A)/(2) then find the measure of angle A.