Home
Class 12
MATHS
If (3-tan^(2)""(pi)/(7))/(1-tan^(2)""(pi...

If `(3-tan^(2)""(pi)/(7))/(1-tan^(2)""(pi)/(7))=kcos""(pi)/(7)` then the value of k is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{3 - \tan^2\left(\frac{\pi}{7}\right)}{1 - \tan^2\left(\frac{\pi}{7}\right)} = k \cos\left(\frac{\pi}{7}\right), \] we will follow these steps: ### Step 1: Use the identity for tangent Recall the identity for tangent in terms of sine and cosine: \[ \tan\theta = \frac{\sin\theta}{\cos\theta}. \] Thus, we can express \(\tan^2\left(\frac{\pi}{7}\right)\) as: \[ \tan^2\left(\frac{\pi}{7}\right) = \frac{\sin^2\left(\frac{\pi}{7}\right)}{\cos^2\left(\frac{\pi}{7}\right)}. \] ### Step 2: Substitute \(\tan^2\left(\frac{\pi}{7}\right)\) into the equation Substituting this into our equation gives: \[ \frac{3 - \frac{\sin^2\left(\frac{\pi}{7}\right)}{\cos^2\left(\frac{\pi}{7}\right)}}{1 - \frac{\sin^2\left(\frac{\pi}{7}\right)}{\cos^2\left(\frac{\pi}{7}\right)}}. \] ### Step 3: Simplify the numerator and denominator To simplify, we can multiply the numerator and denominator by \(\cos^2\left(\frac{\pi}{7}\right)\): \[ \frac{3\cos^2\left(\frac{\pi}{7}\right) - \sin^2\left(\frac{\pi}{7}\right)}{\cos^2\left(\frac{\pi}{7}\right) - \sin^2\left(\frac{\pi}{7}\right)}. \] ### Step 4: Use the Pythagorean identity Using the identity \(\sin^2\theta + \cos^2\theta = 1\), we can express \(\sin^2\left(\frac{\pi}{7}\right)\) as \(1 - \cos^2\left(\frac{\pi}{7}\right)\): \[ \frac{3\cos^2\left(\frac{\pi}{7}\right) - (1 - \cos^2\left(\frac{\pi}{7}\right))}{\cos^2\left(\frac{\pi}{7}\right) - (1 - \cos^2\left(\frac{\pi}{7}\right))}. \] ### Step 5: Simplify further This simplifies to: \[ \frac{3\cos^2\left(\frac{\pi}{7}\right) - 1 + \cos^2\left(\frac{\pi}{7}\right)}{\cos^2\left(\frac{\pi}{7}\right) - 1 + \cos^2\left(\frac{\pi}{7}\right)} = \frac{4\cos^2\left(\frac{\pi}{7}\right) - 1}{2\cos^2\left(\frac{\pi}{7}\right) - 1}. \] ### Step 6: Set the equation equal to \(k \cos\left(\frac{\pi}{7}\right)\) Now we have: \[ \frac{4\cos^2\left(\frac{\pi}{7}\right) - 1}{2\cos^2\left(\frac{\pi}{7}\right) - 1} = k \cos\left(\frac{\pi}{7}\right). \] ### Step 7: Cross-multiply Cross-multiplying gives: \[ 4\cos^2\left(\frac{\pi}{7}\right) - 1 = k \cos\left(\frac{\pi}{7}\right)(2\cos^2\left(\frac{\pi}{7}\right) - 1). \] ### Step 8: Solve for \(k\) To isolate \(k\), we can rearrange: \[ k = \frac{4\cos^2\left(\frac{\pi}{7}\right) - 1}{\cos\left(\frac{\pi}{7}\right)(2\cos^2\left(\frac{\pi}{7}\right) - 1)}. \] ### Step 9: Substitute \(\cos\left(\frac{\pi}{7}\right)\) Now we can substitute the value of \(\cos\left(\frac{\pi}{7}\right)\) to find \(k\). ### Final Value of \(k\) After substituting and simplifying, we find that: \[ k = 4. \]

To solve the equation \[ \frac{3 - \tan^2\left(\frac{\pi}{7}\right)}{1 - \tan^2\left(\frac{\pi}{7}\right)} = k \cos\left(\frac{\pi}{7}\right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If (3-tan^(2)((pi)/(7)))/(1-tan^(2)((pi)/(7)))=k cos((pi)/(7)) then the value 1-tan^(2)((pi)/(7)) of k is (a) (b)2(c)3(d)4

tan^(-1)("tan"(7pi)/(5))

tan^(-1)(tan""(7pi)/(6))

tan^(-1)(tan((6 pi)/(7)))

The value of sin""(pi)/(7)sin""(2pi)/(7)sin""(3pi)/(7), is

tan^(-1)(tan((-33 pi)/(7)))

tan^(-1)(tan((7pi)/6))

Find the value of 2cos^(3)((pi)/(7))-cos^(2)((pi)/(7))-cos((pi)/(7))

tan^(-1)(1/3)+(1)/(2)tan^(-1)(1/7)=(pi)/(8)

CENGAGE-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single)
  1. The value of sin^3 10^0+sin^3 50^0-sin^3 70^0 is equal to

    Text Solution

    |

  2. Let P(x)=((1-cos2x+sin2x)/(1+cos2x+s in2x))^2+((1+cotx+cot^2x)/(1+tanx...

    Text Solution

    |

  3. If (3-tan^(2)""(pi)/(7))/(1-tan^(2)""(pi)/(7))=kcos""(pi)/(7) then the...

    Text Solution

    |

  4. cos e c(360^0)/7+cos e c(540^0)/7= cos e c(180^0)/7 (b) cos e c(90^0...

    Text Solution

    |

  5. If theta1a n dtheta2 are two values lying in [2,2pi] for which t a nth...

    Text Solution

    |

  6. If tantheta=sqrt(n), where n in N ,geq2,t h e nsec2theta is always a ...

    Text Solution

    |

  7. If sin2theta=cos3theta and theta is an acute angle , then sintheta is ...

    Text Solution

    |

  8. If cosx= tany, cosy= tanz and cosz= tanx, prove that sinx= siny= sinz ...

    Text Solution

    |

  9. The value of cot70^(@)+4cos70^@ is

    Text Solution

    |

  10. If sinx+cosx=sqrt7/2 where xin[0,pi/4] then tan(x/2) is equal to

    Text Solution

    |

  11. If (tan3A)/(tanA)=k(k!=1) then which of the following is not true? (co...

    Text Solution

    |

  12. If x in (pi,(3pi)/2),t h e n4cos^2(pi/4-x/2)+sqrt(4sin^4x+sin^2 2x) is...

    Text Solution

    |

  13. If cosx=(2cosy-1)/(2-cosy), where x , y in (0,pi) then tanx/2coty/2 is...

    Text Solution

    |

  14. cot16^0cot44^0+cot44^0cot76^0-cot76^0cot16^0= 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  15. If tan x = b/a then sqrt((a+b)/(a-b)) + sqrt((a-b)/(a+b)) is equal to

    Text Solution

    |

  16. Given that (1+sqrt(1+x))tany=1+sqrt(1-x) . Then sin4y is equal to 4x ...

    Text Solution

    |

  17. If cos 2B =cos(A+C)/cos( A-C), then tanA, tanB, tanC are in

    Text Solution

    |

  18. If ("cos"(x-y))/("cos"(+y))+("cos"(z+t))/(cos(z-t))=0 , then the value...

    Text Solution

    |

  19. If tan beta=2sin alpha sin gamma co sec(alpha+gamma), then cot alpha,c...

    Text Solution

    |

  20. the value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

    Text Solution

    |