Home
Class 12
MATHS
(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is...

`(sin2A+sin2B+sin2C)/(sinA+sinB +sinC)` is equal to

A

`8 sin((A)/(2))sin((B)/(2))sin((C)/(2))`

B

`8cos((A)/(2))cos((B)/(2))cos((C)/(2))`

C

`8tan((A)/(2))tan((B)/(2))tan((C)/(2))`

D

`8cot((A)/(2))cot((B)/(2))cot((C)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sin 2A + \sin 2B + \sin 2C) / (\sin A + \sin B + \sin C)\), we can use trigonometric identities. ### Step-by-Step Solution: 1. **Use the Double Angle Identity**: We know that \(\sin 2A = 2 \sin A \cos A\). Therefore, we can express \(\sin 2A + \sin 2B + \sin 2C\) as: \[ \sin 2A + \sin 2B + \sin 2C = 2 \sin A \cos A + 2 \sin B \cos B + 2 \sin C \cos C \] 2. **Factor Out the 2**: We can factor out the 2 from the expression: \[ = 2(\sin A \cos A + \sin B \cos B + \sin C \cos C) \] 3. **Use the Sum-to-Product Identities**: We can apply the sum-to-product identities to simplify \(\sin A + \sin B + \sin C\). However, for this case, we will keep it as is for now. 4. **Substituting Back**: Now we rewrite the original expression: \[ \frac{2(\sin A \cos A + \sin B \cos B + \sin C \cos C)}{\sin A + \sin B + \sin C} \] 5. **Simplifying the Expression**: The expression can be simplified further depending on the values of A, B, and C. However, we can use a known identity: \[ \sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C \] This leads us to: \[ \frac{4 \sin A \sin B \sin C}{\sin A + \sin B + \sin C} \] 6. **Final Result**: Thus, the expression simplifies to: \[ \frac{4 \sin A \sin B \sin C}{\sin A + \sin B + \sin C} \] ### Conclusion: The expression \(\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C}\) is equal to \(\frac{4 \sin A \sin B \sin C}{\sin A + \sin B + \sin C}\).

To solve the expression \((\sin 2A + \sin 2B + \sin 2C) / (\sin A + \sin B + \sin C)\), we can use trigonometric identities. ### Step-by-Step Solution: 1. **Use the Double Angle Identity**: We know that \(\sin 2A = 2 \sin A \cos A\). Therefore, we can express \(\sin 2A + \sin 2B + \sin 2C\) as: \[ \sin 2A + \sin 2B + \sin 2C = 2 \sin A \cos A + 2 \sin B \cos B + 2 \sin C \cos C ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise 3.10|5 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, (sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

(sin2A+sin2B+sin2C)/(sinA+sinB+sinC)i se q u a lto 8sin(A/2)sin(B/2)sin(C/2) (b) 8cos(A/2)cos(B/2)cos(C/2) 8tan(A/2)tan(B/2)tan(C/2) (d) 8cot(A/2B)/2cot(C/2)

If A+B+C=180^(@) , then (sin2A+sin2B+sin2C)/(cosA+cosB+cosC-1) is equal to

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sinA/2 sinB/2sinC/2

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)

Statement I: If sinA=sinB , cosA=cosB then A= 2np + B Statement II :If A+B+C=90^@ then sin2A+sin2B + sin2C = 4 sinA sinB sinC Which of the above statements is correct?

If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2) sin. (B)/(2) sin. (C)/(2) then the value of 3k^(3)+2k^(2)+k+1 is equal to

CENGAGE-TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS-Exercise (Single)
  1. A circular ring of radius 3cm hangs horizontally form a point 4cm v...

    Text Solution

    |

  2. The distance between the two parallel lines is 1 unit. A point A is ch...

    Text Solution

    |

  3. If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then asqrt(1-a^2)+bsqrt(1-b^2)+cs...

    Text Solution

    |

  4. If A+B+C=3pi/2. Then cos 2A +cos 2B+cos2C is equal to

    Text Solution

    |

  5. If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta), then

    Text Solution

    |

  6. In any triangle A B C ,sin^2A-sin^2B+sin^2C is always equal to 2sinAsi...

    Text Solution

    |

  7. The value of sum(r=0)^10cos^3((rpi)/3) is

    Text Solution

    |

  8. In triangle ABC,(sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

    Text Solution

    |

  9. (sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

    Text Solution

    |

  10. If cos^(2)A+cos^(2)B+cos^(2)C=1, then triangle ABC is

    Text Solution

    |

  11. In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the valu...

    Text Solution

    |

  12. If cos x+cos y-cos(x+y)=(3)/(2), then

    Text Solution

    |

  13. If a sin x+b cos(x+theta)+b cos(x-theta)=d, then the minimum value of ...

    Text Solution

    |

  14. If u=sqrt(a^2cos^2theta+b^2sin^2theta)+sqrt(a^2sin^2theta+b^2cos^2thet...

    Text Solution

    |

  15. If tanx =n tany , n in R^+ then the maximum value of sec^2(x-y) is

    Text Solution

    |

  16. If 0lt=xlt=pi/3 then range of f(x)=sec(pi/6-x)+sec(pi/6+x) is (4/(sqrt...

    Text Solution

    |

  17. The maximum value of cos xsin x+sqrt(sin^(2)x+sin^(2)((pi)/(6))} is

    Text Solution

    |

  18. If alpha,beta,gamma are ccute angles and costheta=sinbeta//sinalpha,co...

    Text Solution

    |

  19. sum(n=1)^ootan(theta/(2^n))/(2^(n-1)cos(theta/(2^(n-1))))

    Text Solution

    |

  20. If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b xsinc+ysin2c+...

    Text Solution

    |