Home
Class 12
MATHS
Let cos (alpha+beta) = 4/5 and sin(alph...

Let ` cos (alpha+beta) = 4/5` and `sin(alpha-beta)=5/13 ` where `0<= alpha,beta<= pi/4` then find ` tan (2alpha)`

A

`(20)/(7)`

B

` ( 25)/(16) `

C

`(56)/(33)`

D

`(19)/(12)`

Text Solution

Verified by Experts

The correct Answer is:
C

`cos (alpha + beta )=(4)/(5)`
`rArr tan (alpha + beta) = (3)/(4)`
`" " sin (alpha - beta) = (5)/(13)`
`rArr tan (alpha - beta) = (5)/(12)`
` therefore tan 2 alpha = tan (alpha + beta + alpha - beta)`
` " "= ((3)/(4)= (5)/(12))/(1-(3)/(4)(5)/(12)) = (56)/(33)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise JEE Advanced Previous Year|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Numerical)|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let cos(alpha+beta) =4/5 and let sin (alpha-beta)=5/13 where 0 le alpha, beta le (pi)/(4) then tan 2 alpha

Let cos(alpha+beta)=(4)/(5) and let sin(alpha-beta)=(5)/(13) , where 0 le alpha , beta=(pi)/(4) . Then tan2alpha=

Let cos(alpha+beta)=(4)/(5) and let sin(alpha-beta)=(5)/(13), where 0<=alpha,beta<=(pi)/(4) Then tan2 alpha=(36)/(33) b.(19)/(12) c.(20)/(7)d*(25)/(16)

Let cos(alpha+beta)=(4)/(5) and let sin (alpha-beta)=(5)/(13) where 0<=alpha,beta<=(pi)/(4). Then tan2 alpha=(56)/(33)(b)(19)/(12)(c)(20)/(7) (d) (25)/(16)

If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha lie between 0 and (pi)/(4) , then find that value of tan2alpha .