Home
Class 12
MATHS
If 5(tan^2x - cos^2x)=2cos 2x + 9, then ...

If `5(tan^2x - cos^2x)=2cos 2x + 9`, then the value of cos4x is

A

`- (7)/(9)`

B

`- (3)/(5)`

C

`(1)/(3)`

D

`(2)/(9)`

Text Solution

Verified by Experts

The correct Answer is:
A

`5 ( tan ^(2) x - cos^(2) x) = 2 cos 2x + 9`
`rArr 5 (sec^(2) x -1- cos ^(2)x) = 2(2 cos^(2)x -1)+9`
`rArr 5[(1)/(y)-1-y] = 2(2y-1)+9` (Putting `cos^(2)x =y` )
`rArr 9y^(2) + 12y -5 =0`
`rArr (3y -1)(3y +5) =0`
`rArr y = (1)/(3)" " (because y =-(5)/(3)` is not possible `)`
Now, `cos 2x = 2 cos^(2) x -1 = 2 ((1)/(3)) -1 =- (1)/(3)`
`" " cos 4x = 2cos ^(2)2x -1 = 2 (- (1)/(3))^(2) - 1 = - (7)/(9)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise JEE Advanced Previous Year|5 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Matrix Match Type|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Exercise (Numerical)|38 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise SINGLE CORRECT ANSWER TYPE|38 Videos
  • TRIGONOMETRIC RATIOS FOR COMPOUND, MULTIPLE, SUB-MULTIPLE ANGLES, AND TRANSFORMATION FORMULAS

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

If 5(tan^(2)x-cos^(2)x)=2cos2x+9, then the value of cos4x is: (2)/(9)(2)-(7)/(9)(3)-(3)/(5)(4)(1)/(3)

5(tan^(2)x-cos^(2)x) = 2cos2x +9 , then the value of cos4x is:

If 5(tan^(2)x-cos^(2)x)=2cos2x+9, then the value of cos4x is

If sin (x+y)=cos (x-y), then the value of cos^2x is :

If cos3x cos7x=cos^(2)2x, then general value of x is

If cos x+cos y=a and cos2x+cos2y=b then the value of cos x cos y=(lambda a^(2)+mu b-2)/(4) the value of 2 lambda-mu is

If cos3x.cos7x=cos^(2)2x, then general value of x is

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :